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Outline

e Overview of Future Colliders

* Lepton Colliders for Higgs Factory, and Hadron Colliders for
energy frontier

» Advanced Technologies for Future Colliders
* Nano-beam and NRF/SRF technology
 High-field Superconducting Magnet technology



Future Colliders based on SC Technology (See full list in next pages)

Linear Colliders:

ILC e+e- ( 250 GeV = 1 TeV) :
SRF: for High-Q (101 and high-G (31.5 MV/m)
Highest efficiency and AC-power balance

CLIC e+e- ( 380 GeV > 3 TeV) :
NRF: Very high G (100 MV/m) for energy frontier with compactness

Circular Colliders :
FCC-e+e- (90 = 350 GeV):

SRF: with staging for efficient energy extension
Synchrotron radiation (SR) to determine the energy
Highest luminosity at Z and H,

FCC-pp (2 x 50 TeV):

High-field SC magnets (SCM: 16 T) for energy frontier
SRF: for acceleration for good energy balance w/ SR

CEPC e+e- (2 x 120 GeV):

SRF: for acceleration,
Synchrotron radiation to determine the energy

SPPC- pp (75 TeV):
High-field SCM (12 T) for energy frontier
SRF: beam acceleration

(EIC lonee-(275/100 GeV/n v.s. 18 GeV, under constr.)
e SCMand SRF

MC p+p— (3 -14 TeV)

*  SRF and NRF with very high-field SCM

* Higher efficiency at > 3 TeV, although short life-time.

CLIC

FCC-ee/-hh

MC

EIC

ILC

CEPC/SPPC




Future Colliders based on SC Technology (see full list in next pages)

Linear Colliders:

ILC e+e- ( 250 GeV = 1 TeV) :
SRF: for High-Q (101 and high-G (31.5 MV/m)
Highest efficiency and AC-power balance

CLIC e+e- ( 380 GeV > 3 TeV) :
NRF: Very high G (100 MV/m) for energy frontier with compactness

Circular Colliders :

FCC-e+e- (90 > 350 GeV): CLIC ILC

SRF: with staging for efficient energy extension
Synchrotron radiation (SR) to determine the energy
Highest luminosity at Z and H,

FCC-pp (2 x 50 TeV):

High-field SC magnets (SCM: 16 T) for energy frontier
SRF: for acceleration for good energy balance w/ SR

CEPC e+e- (2 x 120 GeV):

SRF: for acceleration,
Synchrotron radiation to determine the energy

SPPC- pp (75 TeV): ILC CLIC FCC-ee
High-field SCM (12 T) for energy frontier FCC- <7 T =Ty PPC
SRF: beam acceleration

(EIC lonee-(275/100 GeV/n v.s. 18 GeV, under constr.)
e SCM and SRF

MC p+p— (3 -14 TeV)

*  SRF and NRF with very high-field SCM

e Hi ici > 3 TeV, although short life-time.
~ %m%%ﬁg' N5V g ESPPU-Physics-Briefing Book, (2019)




Luminosity normalized by AC-Plug Power

» Circular Colliders may be efficient in lower energy region below 250 GeV (COM),
» Linear Colliders may have advantage in an energy region above 250 GeV,
* Muon Collider may become a potential options above 1 TeV

- 110
(updated)

V. Shiltsev and F. Zimmermann, K. Long, D. Lucchesi, M. Palmer, N. Pastrone, D. Schulte, and V. Shiltseyv,
Rev. Mod. Phys. Vol. 93, No. 1, Jan-March 2021) Nature Physics 17, March , p289-292, 2021.



Luminosity normalized by AC-Plug Power

» Circular Colliders may be efficient in lower energy region below 250 GeV (COM),
» Linear Colliders may have advantage in an energy region above 250 GeV,
« Muon Collider may become a unique/potential options in multi TeV (= Nadia Pastrone’s talk)

T |y

V. Shiltsev and F. Zimmermann, K. Long, D. Lucchesi, M. Palmer, N. Pastrone, D. Schulte, and V. Shiltseyv,
Rev. Mod. Phys. Vol. 93, No. 1, Jan-March 2021) Nature Physics 17, March , p289-292, 2021.
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Technlcal Challenges in Energy-Frontler Colliders proposed

AC- Power
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Major Challenges in Technology
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High-G and high-Q SRF cavity,
Higher-G for future upgrade including new material,
Nano-beam stability

Acc. Structure, Large-scale production,
Two-beam acceleration in a prototype scale,
Precise alignment and stabilization.

High-Q SRF cavity at < GHz, Nb thin-film Coating,
Synchrotron Radiation absorption,
Energy efficiency (RF efficiency).

High-Q SRF cavity at < GHz, LG Nb-bulk/thin-film,
Synchrotron Radiation constraint,
Low-field magnet with high-precision.

High-field SC magnet
- Nb3Sn (+HTS): high Jc, mechanical stress sustainability
Energy management

High-field SC magnet
- IBS: High Jc, stress sustainability, energy management

Short lifetime, cooling,
High-field SCM, RF in strong magnetic field, .... o



Outline

* Advanced Technologies for Future Colliders
— Nano-beam and NRF/SRF technology for Lepton Colliders

A. Yamamoto, 2021/6/9
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Nano Beam: Key Technology at ILC and CLIC
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Courtesy: N. Terunuma

ATF: Accelerator Test Facility, hosted at KEK

Advancing nano-beam ILC cLic

technology for ILC/CLIC

« To Realize small beam-size and
Stabilize beam position

ILC-250 125 7.7 nm
CLIC-380 190 2.9 nm
ATF2 1.3 41 nm (8 nm eq. at ILC)

1.3 GeV S-band e- LINAC (~70m)

12
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Courtesy: N. Terunuma

ATF: Accelerator Test Facility, hosted at KEK

Advancing nano-beam ILC cLic

technology for ILC/CLIC

« To Realize small beam-size and
Stabilize beam position

ILC-250 125 7.7 nm
CLIC-380 190 2.9 nm
ATF2 1.3 41 nm (8 nm eq. at ILC)

1.3 GeV S-band e- LINAC (~70m)
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Courtesy: W. Wuensch

CLIC: Normal Conducting Linac Technology Landscape

Components:

C-band (6 GHz),
Laboratory with  *© low-emittance
commercial

GeV-range facilities
Operational:

* SACLA

* SwissXFEL (8 GeV)

* Accelerating structures Systems Facilities:

.| (100 MeV-range)
—

* XBoxes at CERN g2,

X-band (12 GHz)
GeV-range facilities
Planning:

* Eu-Praxia

rating Gradient (MV/m scalec ins, BOR = 3x107bppm: —
° e = S P S CERN's Accelerator Complex .
~ 100 (+/_20) MV/m . e 3.5GeV Linac
: )| © Compactlight -, ﬁ' ‘\
Full commercial supply e Aocoloraon'o

* X-band klystrons

Discussed byS. Stapnes

A. Yamamoto, 2021/6/9 See Appendix. P. 58059. i 14




Courtesy: S. Michizono

~ 1.3 GHz SRF Accelerators, worldwide

European XFEL

(in opera

tion, 2017~)

800 cavities

100 CMs

17.5 GeV (Pulsed)

A. Yamamoto, 2021/6/9

ESS (0.8 GHz)
(under construction)

SHINE

(under construction)

~600 cavities
75 CMs
8 GeV (CW)

S1 Global:
DESY, Ferm

8-cavity string Test,

2010

ilab, KEK

8

ILC (planned)

,000 9-cell cavities

900 CMs

2

x 125 GeV (Pulsed)

JLab-CEBAF(1.5 GHz)

(in operation)
40 CMs
6~12 GeV(CW)

~ 2,000 1.3 GHz SRF cavities being realized, even in these 10 years !

LCLS-II -
(under cor

-280+200
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Courtesy: S. Michizono

~ 1.3 GHz, SRF Accelerators, worldwide

ESS S1 Global LCLSAI
obal: :
. under fonstruction
(under construction) DESY, Fermilab, KEK ( )
8-cavity string Test, 2280 chvities
2010 35 CNs |
European XFEL - 4 GeY (CW)
(in operation, 2017~)
-800 cavities
-100 CMs
-17.5 GeV (Pul SHINE
5 GeV (Pulsed) | JLab-CEBAF
(under construction) : N
" ILC (planned) (in Anaratinn
- ~600 cavities 40 ¢ Courtesy: S. Posen
- 75 CMs - 8,000 9-cell cavities 6~12 GeV(CW)
- B ECY () - 900 CMs
- 2x 125 GeV (Pulsed)
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~ 2,000 1.3 GHz SRF cavities being realized, even in these 10 years !
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Courtesy, S. Posen

Recent Progress in SRF Technology

SRF cavity - w/ Meissner state

" B.j, = practical limit for SRF
-/.\ //.\\ —_ -
QB VASN e Bsh = 0.8~ 1.2X Bc,
S «
>.‘/ :17\‘// B BSSh—Nb . 210 mT
== Bs. b3 @ 430mT
N-doping

Baking 75/120C

N-infusion
Baking 120C
EP
High-Q and High-G efforts in progress. NbsSn progress at Fermilab. NbsSn Potential in high-G future
A. Grassellino, TTC Meeting, TRIUMF, Feb., 2019 S. Posen et al., SUST, 34, 02507 (2021)
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Courtesy, S.

Recent Progress in SRF Technology

N-doping

Baking 75/120C

N-infusion
BakTng 120C

EP

SRF cavity - w/ Meissner state

" B.}, = practical limit for SRF
e Bsh = 0.8~ 1.2X Bc,
BSSh—Nb : 210 mT

>x2

BSSh—Nb3Sn : 430mT

T

Progress at Fermilab: Nb, 75/120 bake
A. Grassellino et al., arXiv: 1806/09824

Nb3Sn progress at Fermilab. Nb3$n Potential in hlgh-G future

S. Posen et al., SUST, 34, 02507 (2021)

Posen
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Prospects for Advanced Technologies in
Future Lepton Colliders

* Accel Technologies of Nano-beam and RF technologies are ready to go
forward for lepton colliders (ILC, CLIC, FCC-ee, CEPC), focusing on the Higgs
Factory construction to begin in > ~5 years.

* SRF technology has been well matured for the realization including
cooperation with industry, based on Euro-XFEL project successfully

constructed and in stabke operation.
* SRF high-G R&D effort needs to be extended for future upgrades.

— Nb-bulk, 40 — 50 MV/m and Nb3Sn, > 50 MV/m: ~ 5 years for single-cell R&D and
the following 5 — 10 years for 9cell cavities statistics, in long term scope.



Outline

« Advanced Technologies for Future Colliders

- High-field Superconducting Magnet technology for Hadron Colliders

A. Yamamoto, 2021/6/9 20



Progress in SC Accelerator Magnet Development

SCM: in vortex state < Bc2
Nb;Sn (Bc2, Tc) : 21.5T, 18 K

NbTi (Bc2, Tc): 11.5 T, 9.5 K

Progress in HTS
- Appendix

HFM

: High Field Magnets

Courtesy, L. Bottura
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Courtesy: A. Devred, G. Willering

Performance of series S1 to S4

S2:
May-June 2020

 S1 met specified performance.

« S2, S4 showed degradation after-—
thermal cycles

S2 — MBHA-001 e Ap 1 Lower
i\( DAY

S4 — MBHB-003 i%‘\ \ Ap 2, upper
Root-Cause Analysis

< Additional quench locations related to, but | [§%¢ Quench location at (in progress)
away from defect location. defect location.

- V-l Characteristics,

- Themo-Mech. Analysis,
- X-ray Tomography,

- Others,



Courtesy: A. Zlobin

MDPCT1b: Quench performance in TC1 and TC2 (July 2020)

TC2 test target: achieve ~14.5 T in magnet aperture @1.9 K

MDPCT1b
Quench performance in TC2 (July 2020)

No retraining, all quenches in cou/S, RE, pole turn
MDPCT1b reached its condugtér limit at both temperatures
18% performance degradation wrt TC1




Courtesy: L. Bottura, A. Devred

Mechanical Constrain to consider Operating Margin

Peak stress (MPa)
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Attention : | (J.) reduction:
« irreversible above~170 MPa.

Measurement at Univ. Geneve
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Supercond. Sci. Technol. 31 (2018) 105011.
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Prospects on HF Superconducting Magnet Development

« Magnetic Field:
— Nb3Sn dipole field of 16 T with accelerator quality remains as an ambitious target.

— Mitigation of Degradation becomes a critical issue,
» as lessons learned from the (full scale) HL-LHC 11T and US-MDP 15 T model dipoles.
» degradations experienced at the axial coil ends, possibly caused by combined stress/strain and/or the local enhancement.

— Step-wise development encouraged:

« =14 T: Acc. Acc. quality models, w/ sufficient SC margin ( <=~ 80 % to NbsSn SSL) to explore ultimate potential of
NbsSN (LTS),

- Toward 16 T: short model, hopefully with Nb;Sn alone, and with potential backup with HTS,

* In parallel, 12 T, robust, and accelerator quality prototype magnet, aiming at industrial participation and
the production readiness to be demonstrated.

« Superconductor and Insulation:

— Nb3Sn: stress/strain sustainability needs to be prioritized, in balance with the critical current density
(Jc) and specific heat (C), and
— HTS: as insert beyond the NbszSn ultimate limit,

— Electrical insulation sustainability including epoxy-resin under high mechanical stress and long-
term irradiation.



Personal View for HFM Development and the Timeline

Nb;Sn superconducting magnet technology for hadron colliders, still requires step-by-
step development to reach 14, 15, 16 T, and beyond.

It may require the following time-line:
— Nb3Sn, 12714 T: 5~10 yrs for short-models, and + 5~10 yrs for proto/pre-series with industry.
It will result in 10 — 20 yrs for the construction to start,
— NbsSn, 14~16 T: 10-15 yrs for short-models, and +10 ~ 15 yrs for proto/pre-series with some backup
It will result in 20 — 30 yrs for the construction to start, (consistently to the FCC-integral timeline).

— Nb3Sn + HTS, > 16 T: much more than 15 yrs for fundamental research and shot model
development, and the following years for full scale prototype.

Continuing, patient R&D effort for high-field magnet will be critically important, to

realize energy frontier hadron accelerators in future.

A. Yamamoto, 2021/6/9 26



Personal Scope for HFM Development Timeline

for reaching Accelerator Construction and Operation

15';18‘? Short-model R&D Proto/Pre-series Construction Operation

3

te~10T Sh del R&D P /P i Constructi

Nb,Sn ort-mode rototype/Pre-series onstruction
=1 1T Fundamental and Short Model R&D Prototype/Pre-series

NbsSn + HTS

Note: LHC experience: NbTi (10 T) R&D started in 1980’s
--> (8.3 T) Production started in late 1990’s, in ~ 15 years
- LHC Operation started in later 2000’s, in ~ 25 years

A. Yamamoto, 2021/6/9 27
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Thank you for your attentions
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Approximate technically limited timelines of future large colliding beam facilities
V. Shiltsev and F. Zimmermann, Review of Modern Physics 93, 015006, 2021

A. Yamamoto, 2021/6/9 30



Possible Scenarios of Future Colliders
discussed in ESPPU-2019

-ILC :
ESPPU-2020 Meeting, Summary,
0.25to 1 TeV 20/06/19

- CepC/ SppC

0.09 to 0.24 / to =100 TeV
- CLIC

0.38 to 3 TeV
- FCC-ee / Fcc-hh

0.09 to 0.38 / to 100 TeV

- HL-LHC / HE-LHC

14 /to 27 TeV

A. Yamamoto, 2021/6/9 31




Courtesy, M. Benedikt, L. Bottura, D. Tommasini, S. Prestemon

Multiple R&D Approaches for 16 T Dipole in Europe and US

Cos-0 Common coils
Eur::CirCol CHART?
Swiss Acc. Research & Technology
Blocks Canted Cos-0 (CCT)
Europe
Pioneering work at BNL
Cos-0
usS CCT,

Pioneering work at LBNL

HFM Eucard2->ARIES—> IFAST

N / High Field Magnets




Courtesy, P. Lee, L. Rossi

High-Field Superconductor and Magnets

Original conductor property
summarized by P. Lee

YBCO

Bi-2212
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Progress in HTS SC magnet Development

EuCARD1: insert
(CEA-CNRS-CERN),

racetrack,

ReBCO 4 tape stack
cable,

stand alone tested Sept
2017:

Reached 5.37 T @ 4.2K
(1=3200A)

EuCARD2: Feather-M2
(CERN),

flared Ends coil
ReBCO, Roebel cable,
stand alone tested Apr
2017:

Reached 337 T@
4.2K (I=6500A)




