Prospects for Future Colliders and Advanced Accelerator Technologies

- with Applied Superconductivity -

Akira Yamamoto

(KEK and CERN)

To be presented at the Future Colliders Session, LHCP2021 9 June 2021

Outline

Overview of Future Colliders

- Lepton Colliders for Higgs Factory, and Hadron Colliders for energy frontier
- Advanced Technologies for Future Colliders
 - Nano-beam and NRF/SRF technology
 - High-field Superconducting Magnet technology

Future Colliders based on SC Technology (See full list in next pages)

Linear Colliders:

ILC e+e- (250 GeV \rightarrow 1 TeV) :

- SRF: for High-Q (10¹⁰) and high-G (31.5 MV/m)
- Highest efficiency and AC-power balance

CLIC e+e- (380 GeV → 3 TeV) :

• NRF: Very high G (100 MV/m) for energy frontier with compactness

Circular Colliders :

FCC-e+e- (90 → 350 GeV):

- SRF: with staging for efficient energy extension
 - Synchrotron radiation (SR) to determine the energy
- Highest luminosity at Z and H,

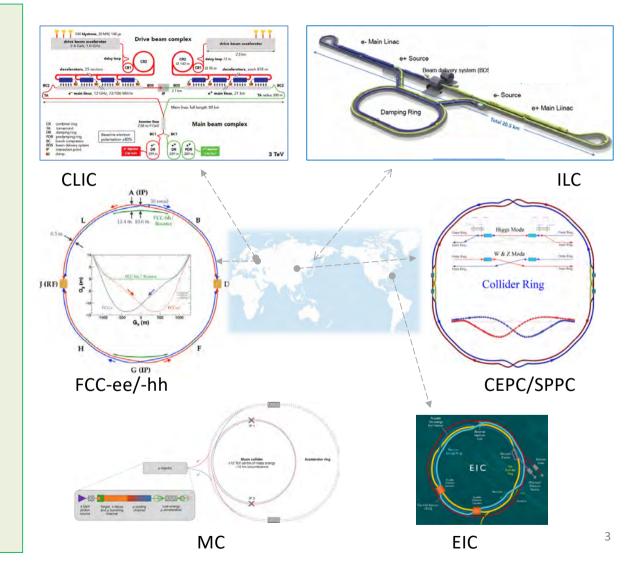
FCC-pp (2 x 50 TeV):

- High-field SC magnets (SCM: 16 T) for energy frontier
- SRF: for acceleration for good energy balance w/ SR

CEPC e+e- (2 x 120 GeV):

- SRF: for acceleration,
 - Synchrotron radiation to determine the energy

SPPC- pp (75 TeV):


- High-field SCM (12 T) for energy frontier
- SRF: beam acceleration

(EIC Ion•e-(275/100 GeV/n v.s. 18 GeV, under constr.)

• SCM and SRF

MC $\mu + \mu - (3 - 14 \text{ TeV})$

- SRF and NRF with very high-field SCM
- Higher efficiency at > 3 TeV, although short life-time.

Future Colliders based on SC Technology (see full list in next pages)

Linear Colliders:

ILC e+e- (250 GeV \rightarrow 1 TeV) :

- SRF: for High-Q (10¹⁰) and high-G (31.5 MV/m)
- Highest efficiency and AC-power balance

CLIC e+e- (380 GeV → 3 TeV) :

• NRF: Very high G (100 MV/m) for energy frontier with compactness

Circular Colliders :

FCC-e+e- (90 → 350 GeV):

- SRF: with staging for efficient energy extension
 - Synchrotron radiation (SR) to determine the energy
- Highest luminosity at Z and H,

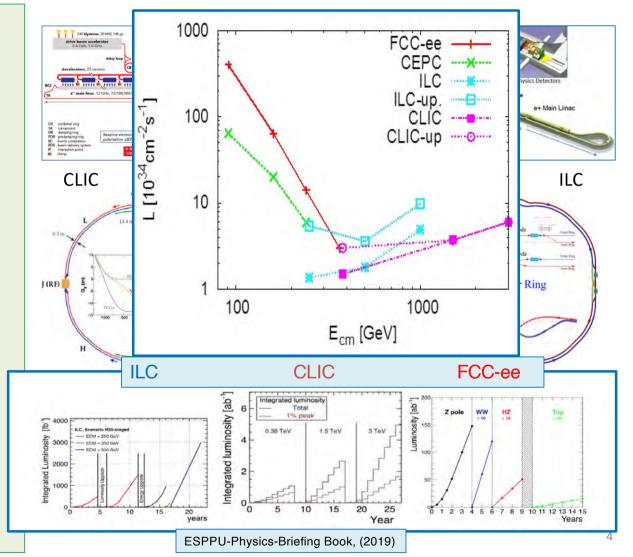
FCC-pp (2 x 50 TeV):

- High-field SC magnets (SCM: 16 T) for energy frontier
- SRF: for acceleration for good energy balance w/ SR

CEPC e+e- (2 x 120 GeV):

- SRF: for acceleration,
 - Synchrotron radiation to determine the energy

SPPC- pp (75 TeV):

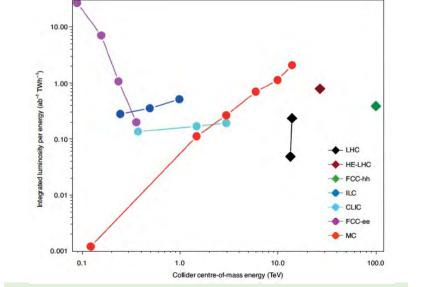

- High-field SCM (12 T) for energy frontier
- SRF: beam acceleration

(EIC Ion•e-(275/100 GeV/n v.s. 18 GeV, under constr.)

• SCM and SRF

MC $\mu + \mu - (3 - 14 \text{ TeV})$

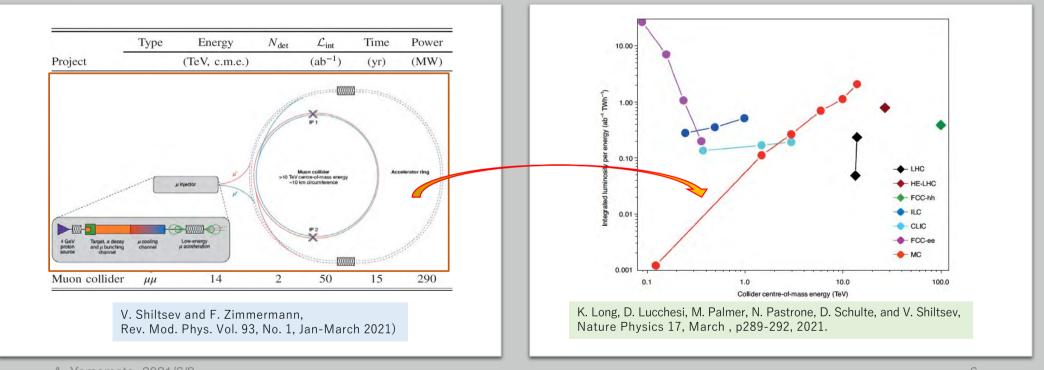
- SRF and NRF with very high-field SCM
- AHigher efficiency at > 3 TeV, although short life-time.



Luminosity normalized by AC-Plug Power

- Circular Colliders may be efficient in lower energy region below 250 GeV (COM),
- Linear Colliders may have advantage in an energy region above 250 GeV,
- Muon Collider may become a potential options above 1 TeV

	Туре	Energy	N _{det}	\mathcal{L}_{int}	Time	Power	
Project		(TeV, c.m.e.)		(ab ⁻¹)	(yr)	(MW)	-
ILC	e^+e^-	0.25	1	2	11	129	\rightarrow 110
		0.5	1	4	10	163(204)	(updated
		1	1			300	(
CLIC	e^+e^-	0.38	1	1	8	168	
		1.5	1	2.5	7	370	
		3	1	5	8	590	
CEPC	e^+e^-	0.091 and 0.16	2	16 + 2.6	2 + 1	149	
		0.24	2	5.6	7	266	
FCC-ee	e^+e^-	0.091 and 0.16	2	150 + 10	4 + 1	259	
		0.24	2	5	3	282	
		0.365 and 0.35	2	1.5 + 0.2	4 + 1	340	
LHeC	ep	1.2	1	1	12	(+100)	
HE-LHC	pp	27	2	20	20	220	
FCC-hh	pp	100	2	30	25	580	
FCC-eh	ep	3.5	1	2	25	(+100)	
Muon collider	μµ	14	2	50	15	290	


V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. Vol. 93, No. 1, Jan-March 2021)

K. Long, D. Lucchesi, M. Palmer, N. Pastrone, D. Schulte, and V. Shiltsev, Nature Physics 17, March , p289-292, 2021.

Luminosity normalized by AC-Plug Power

- Circular Colliders may be efficient in lower energy region below 250 GeV (COM),
- Linear Colliders may have advantage in an energy region above 250 GeV,
- Muon Collider may become a unique/potential options in multi TeV (→ Nadia Pastrone's talk)

Summary of Lepton Colliders

V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. Vol. 93, No. 1, 2021.

Species	FCC-ee (Benedikt et al., 2019a) e^+e^-			$\begin{array}{c} \text{CEPC} \\ \text{(CEPC Study Group,} \\ 2018) \\ e^+e^- \end{array}$		ILC (Aihara <i>et al.</i> , 2019) e^+e^-		CLIC (Aicheler <i>et al.</i> , 2019) e^+e^-		
Beam energy (GeV) Circumference, length (km)	45.6	120 97.75			120 00	125 20.5	250 31	190 11	1500 50	
Interaction regions	24	2 or 4			2		1		1	
Integrated luminosity/expt. (ab ⁻¹ /yr)	26	0.9	0.17	4	0.4	0.2	0.3	0.2	0.6	
Peak luminosity (10 ³⁴ cm ⁻² s ⁻¹)	230	8.5	1.55	32	3	1.4	1.8	1.5	5.9	
Repetition rate (Hz, f_{rev} for rings)		3067		30	000	10000	5		50	
Polarization (%)	≥ 10	0	0	5-10	0		(e^{-}, e^{+})	80	%, 0%	
Time between collisions (μs)	0.015	0.75	8.5	0.025	0.68	0.55	0.55	0.0005	0.0005	
Energy spread (rms, 10 ⁻³)	1.3	1.65	2.0	0.8	1.3	1.9, 1.5 (e^-, e^+)	1.2, 0.7 (e^-, e^+)	3.5	3.5	
Bunch length (rms, mm)	12.1	5.3	2.5	8.5	4.4	0.3	0.3	0.07	0.044	
Normalized rms emittance (H,V µm)	24, 0.09	148, 0.3	520, 1.0	16, 0.14	284, 0.6	5, 0.035	10, 0.035	0.9, 0.03	0.66, 0.03	
β^* at IP (H,V cm)	15, 0.08	30, 0.1	100 0.16	20, 0.1	36, 0.15	1.3, 0.041	2.2, 0.048	0.8, 0.01	0.69, 0.00	
Horizontal IP beam size (µm)	6.4	14	38	6.0	21	0.52	0.47	0.15	0.04	
Vertical IP beam size (nm)	28	36	68	40	60	8	6	3	1	
Full crossing angle (mrad)		30		3	33	14		20		
Crossing scheme		Crab wa	aist	Crab	waist	Crab crossing		Crab	Crab crossing	
Piwinski angle Φ	28.5	5.8	1.5	23.8	2.6		0		0	
Beam-beam parameter ξ_v (10 ⁻³)	133	118	128	79	109					
rf frequency (MHz)	400	400	400 and 800	650	650	1300	1300	11 994	11 994	
Particles per bunch (1010)	17	18	23	8	15	2	2	0.52	0.37	
Bunches per beam	16 640	328	48	12 000	242	1312	1312	352	312	
Average beam current (mA)	1390	29	5.4	461	17.4	0.021	0.021	0.014	0.009	
Injection energy (GeV)	On	energy (top up)	On energ	y (top up)	5.0 (linac)		9.0 (linac)		
rf gradient (MV/m)	1.3	9.8	19.8	3.6	19.7	31.5	31.5	72	100	
SR power loss (MW)		100		33.5	60					

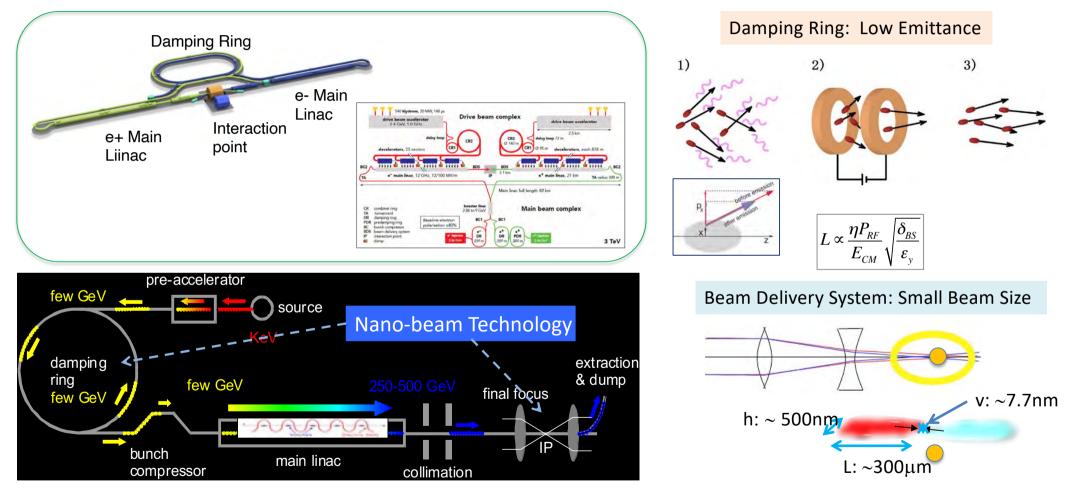
Summary of Hadron Colliders

V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. Vol. 93, No. 1, Jan-March 2021)

	HE-LHC	FCC-hh	SppC		$\mu\mu$ collider	
Species	pp	pp	pp	1.5.261	$\mu^+\mu^-$	
Beam energy (TeV)	13.5	50	37.5	0.063	3	7^{a}
Circumference (km)	26.7	97.75	100	0.3	6	26.7
Interaction regions	2 (4)	4	2	1	2	2
Peak luminosity $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	15	5 - 30	10	0.008	12	33
Integrated luminosity per expt. (ab ⁻¹ /yr)	0.5	0.25-1.0	~0.4	0.001	1.0	3
Time between collisions (μs)	0.025	0.025	0.025	1	20	90
Events per crossing	800	170 - 1000	~300			
Energy spread (rms, 10^{-3})	0.1	0.1	0.2	0.04	1	1
Bunch length (rms, mm)	80	80	75.5	63	2	1
IP beam size (μm)	6.6	6.8 (initial)	6.8 (initial)	75	1.5	0.6
Injection energy (GeV)	1300	3300	2100		On energy	
Transverse emittance (rms normalized, μ m)	2.5	2.1 (initial)	2.4 (initial)	200	25	25
β^* , amplitude function at IP (cm)	45	110 - 30	75	1.7	0.25	1
Beam-beam tune shift/ IP (10^{-3})	5	5 - 15	7.5	20	90	100
rf frequency (MHz)	400	400	400/200	805	805	805
Particles per bunch (10^{10})	22	10	15	400	200	200
Bunches per beam	2808	10 600	10080	1	1	1
Average beam current (mA)	1120	500	730	640	16	4
Length of standard cell (m)	137	213	148			
Phase advance per cell (deg)	90	90	90			
Peak magnetic field (T)	16	16	12 (24)	10	10	16
SR power loss/beam (MW)	0.1	2.4	1.2	0	0.07	0.5
Longitudinal damping time (h)	3.6	1,1	2.4			
Initial burn-off time (h)	3.0	17 - 3.4	13			
Total facility ac power (MW)	200	580		200	270	290
Novel technology	16 T magnets	16 T magnets	HTS magnets	μ production/10–16 T magn		

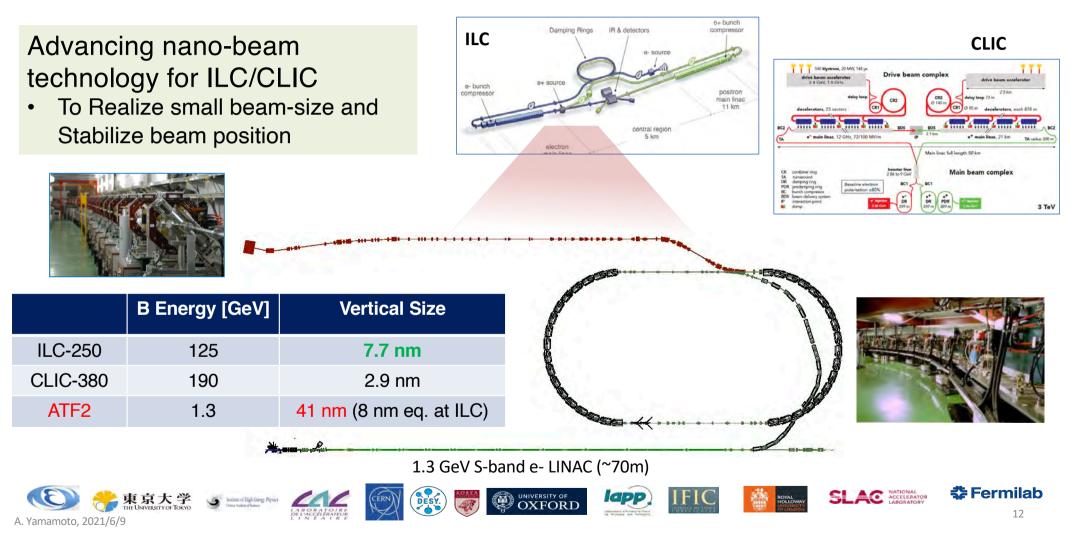
TABLE VII. Tentative parameters of selected future high-energy hadron and muon colliders. Parameters of the $\mu^+\mu^-$ Higgs factory are given for reference only. An estimate for SppC ac power is not yet available.

A. Yamamotore 2021 Toy c.m.e. muon collider design has not yet been completed; the numbers are a projection (Neuffer and Shiltsev, 2018).

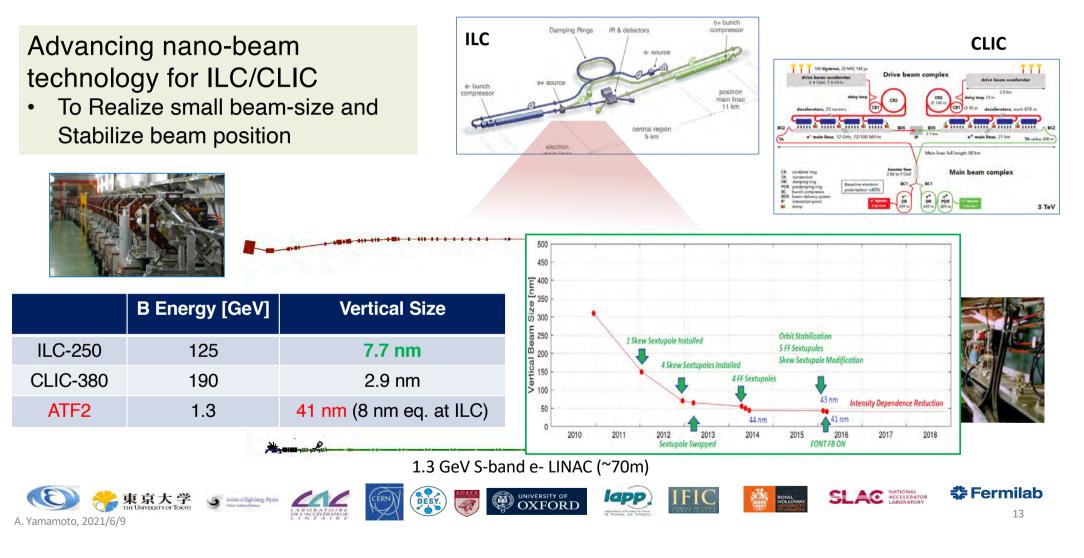

Technical Challenges in Energy-Frontier Colliders proposed

		Ref.	E (CM) [TeV]	Luminosity [1E34]	AC- Power [MW]	E: [MV/m] [GHz]	В [T]	Major Challenges in Technology
LC	ILC	TDR update	0.25 -1	1.35 (~ 4.9)	110 (~ 300)	31.5 - 45 [1.3]		High-G and high-Q SRF cavity, Higher-G for future upgrade including new material, Nano-beam stability
88	CLIC	CDR	0.38 - 3	1.5 (~ 6)	160 (~ 580)	72 – 100 [12]		Acc. Structure, Large-scale production, Two-beam acceleration in a prototype scale, Precise alignment and stabilization.
СС	FCC-ee	CDR	0.09 ~ 0.38	460 ~ 31	260 ~ 350	10 - 20 [0.4 - 0.8]		High-Q SRF cavity at < GHz, Nb thin-film Coating, Synchrotron Radiation absorption, Energy efficiency (RF efficiency).
ee	CEPC	CDR	0.046 - 0.24	32~5	150 ~ 270	20 – 40 [0.65]		High-Q SRF cavity at < GHz, LG Nb-bulk/thin-film, Synchrotron Radiation constraint, Low-field magnet with high-precision.
сс	FCC-hh	CDR	~ 100	5 ~ 30	580		16	High-field SC magnet - <u>Nb3Sn (+HTS)</u> : high Jc, mechanical stress sustainability Energy management
hh	SPPC	CDR	70	10			12	High-field SC magnet - <u>IBS</u> : High Jc, stress sustainability, energy management
CC mm _{A:Yar}	MC namoto, 2021	1/6/9	0.12 ~ 14	0.008~33	200 ~290	tbd [tbd]	10 ~ 20	Short lifetime, cooling, High-field SCM, RF in strong magnetic field, 9

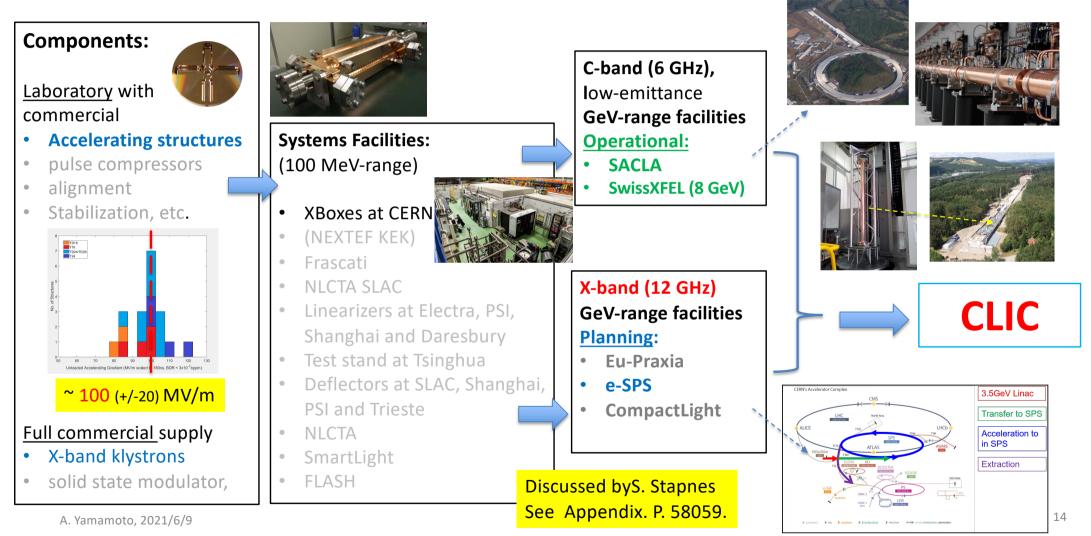
Outline


- Overview of Future Colliders
 - Lepton Colliders for Higgs Factory, and Hadron Colliders for energy frontier
- Advanced Technologies for Future Colliders
 - Nano-beam and NRF/SRF technology for Lepton Colliders
 - High-field Superconducting Magnet technology for Hadron Colliders

Nano Beam: Key Technology at ILC and CLIC


Courtesy: N. Terunuma

ATF: Accelerator Test Facility, hosted at KEK


Courtesy: N. Terunuma

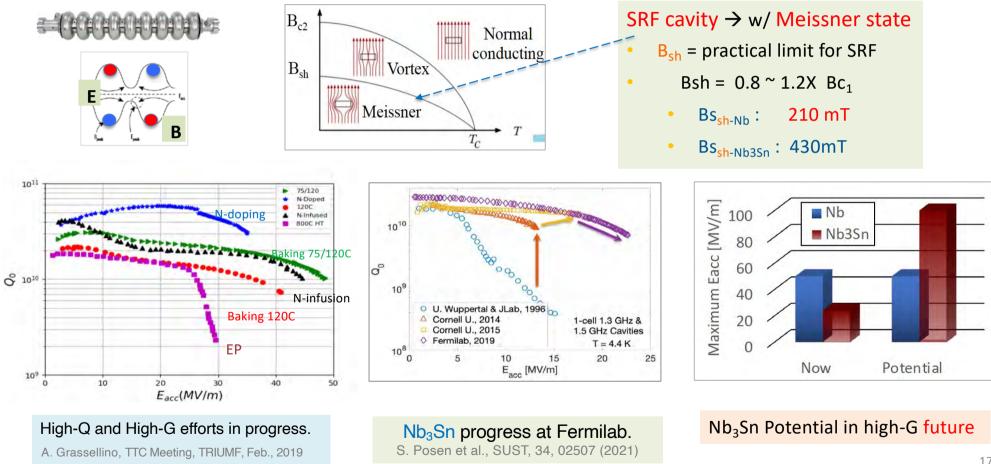
ATF: Accelerator Test Facility, hosted at KEK

Courtesy: W. Wuensch

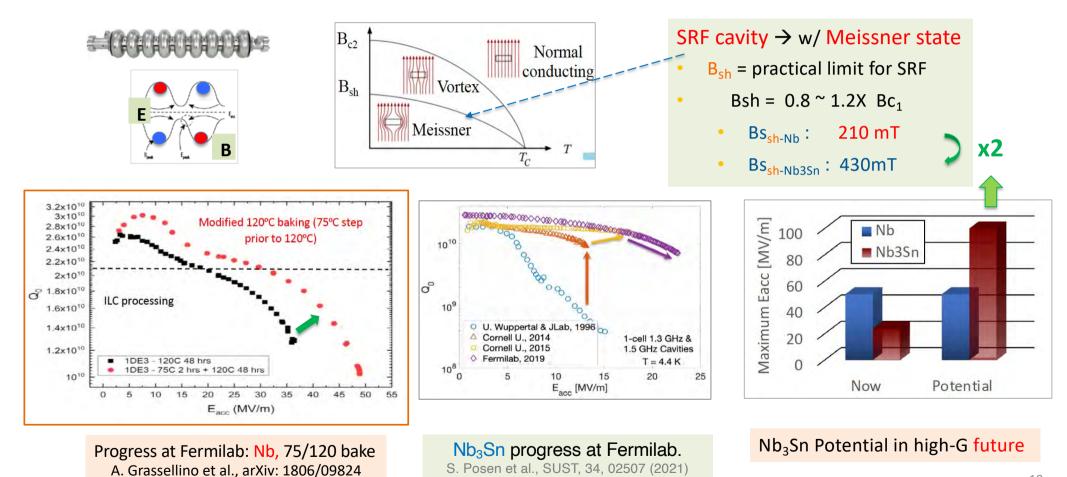
CLIC: Normal Conducting Linac Technology Landscape


Courtesy: S. Michizono

~ 1.3 GHz SRF Accelerators, worldwide


Courtesy: S. Michizono

~ 1.3 GHz, SRF Accelerators, worldwide

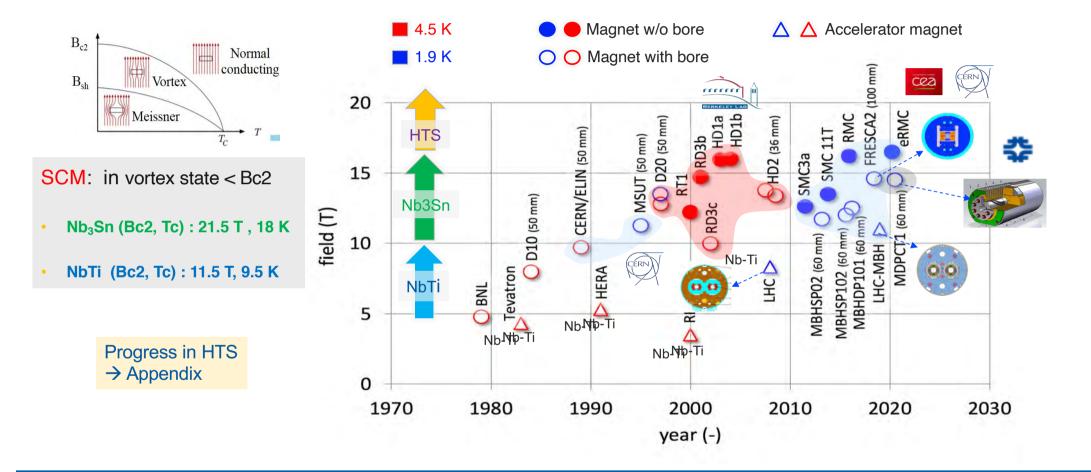


16

Recent Progress in SRF Technology

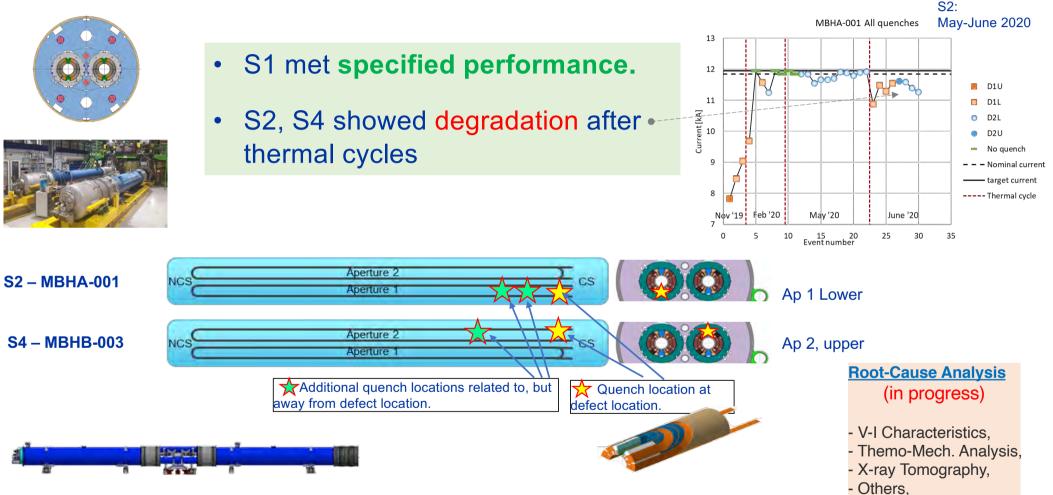
Recent Progress in SRF Technology

Prospects for Advanced Technologies in Future Lepton Colliders


- Accel Technologies of Nano-beam and RF technologies are ready to go forward for lepton colliders (ILC, CLIC, FCC-ee, CEPC), focusing on the Higgs Factory construction to begin in > ~5 years.
- SRF technology has been well **matured** for the realization including cooperation with industry, based on Euro-XFEL project successfully constructed and in stabke operation.
- SRF high-G R&D effort needs to be extended for future upgrades.
 - Nb-bulk, 40 50 MV/m and Nb3Sn, > 50 MV/m: ~ 5 years for single-cell R&D and the following 5 – 10 years for 9cell cavities statistics, in long term scope.

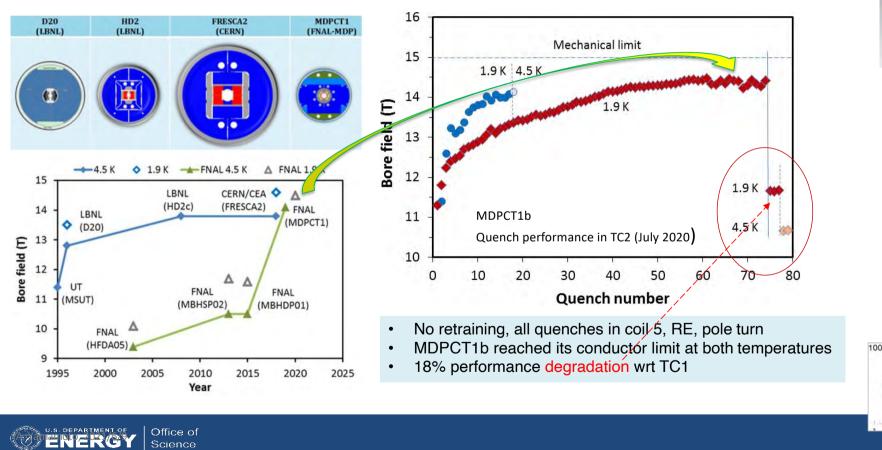
Outline

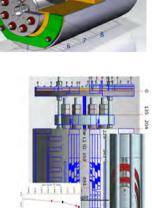
- Overview of Future Colliders
 - Lepton Colliders for Higgs Factory, and Hadron Colliders for energy frontier
- Advanced Technologies for Future Colliders
 - Nano-beam and NRF/SRF technology for Lepton Colliders
 - High-field Superconducting Magnet technology for Hadron Colliders


Progress in SC Accelerator Magnet Development

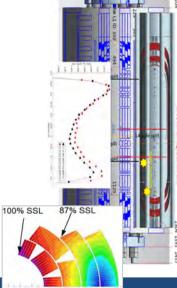
HFM High Field Magnets Courtesy, L. Bottura

Courtesy: A. Devred, G. Willering


Performance of series S1 to S4

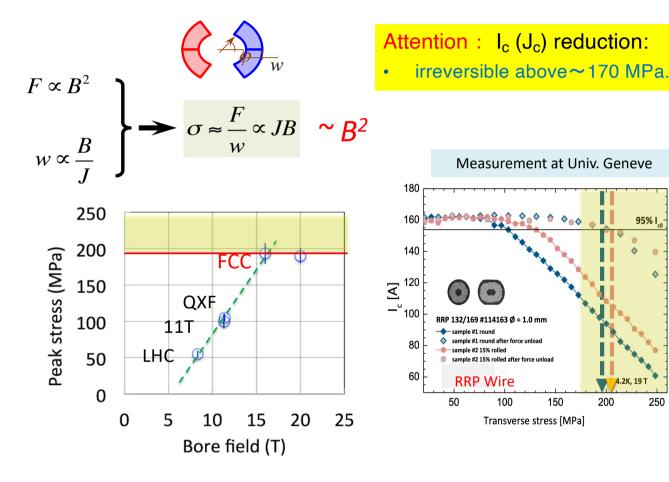


DEVELOPMENT PROGRAM MDPCT1b: Quench performance in TC1 and TC2 (July 2020)

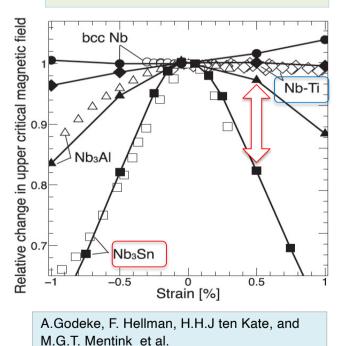

TC2 test target: achieve ~14.5 T in magnet aperture @1.9 K

U.S. MAGNET

Courtesy: A. Zlobin


80 80

23


Courtesy: L. Bottura, A. Devred Mechanical Constrain to consider Operating Margin

95% I

250

- Large Impact of Strain on Jc, reduction,
- Nb3Sn superconductor . much different from NbTi

Supercond. Sci. Technol. 31 (2018) 105011.

Prospects on HF Superconducting Magnet Development

• Magnetic Field:

- Nb3Sn dipole field of 16 T with accelerator quality remains as an ambitious target.
- Mitigation of Degradation becomes a critical issue,
 - as lessons learned from the (full scale) HL-LHC 11T and US-MDP 15 T model dipoles.
 - degradations experienced at the axial coil ends, possibly caused by combined stress/strain and/or the local enhancement.
- Step-wise development encouraged:
 - ≥ 14 T: Acc. Acc. quality models, w/ sufficient SC margin (≤ ~ 80 % to Nb₃Sn SSL) to explore ultimate potential of Nb₃SN (LTS),
 - Toward 16 T: short model, hopefully with Nb₃Sn alone, and with potential backup with HTS,
 - In parallel, **12 T**, robust, and accelerator quality prototype magnet, aiming at industrial participation and the production readiness to be demonstrated.

• Superconductor and Insulation:

- Nb₃Sn: stress/strain sustainability needs to be prioritized, in balance with the critical current density (J_c) and specific heat (C_p) , and
- HTS: as insert beyond the Nb₃Sn ultimate limit,
- Electrical insulation sustainability including epoxy-resin under high mechanical stress and long-term irradiation.

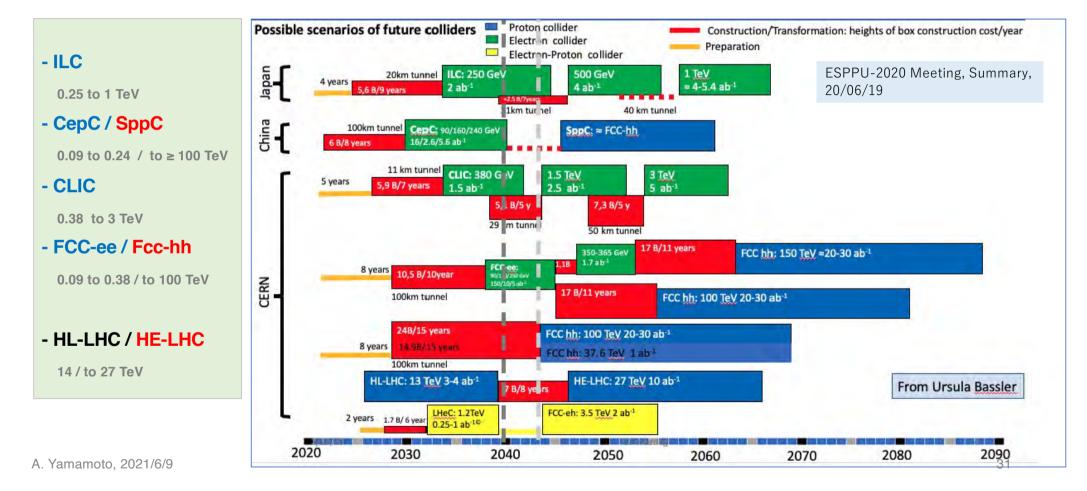
Personal View for HFM Development and the Timeline

- Nb₃Sn superconducting magnet technology for hadron colliders, still requires step-bystep development to reach 14, 15, 16 T, and beyond.
- It may require the following **time-line**:
 - Nb₃Sn, 12~14 T: 5~10 yrs for short-models, and + 5~10 yrs for proto/pre-series with industry.
 It will result in 10 20 yrs for the construction to start,
 - Nb₃Sn, 14~16 T: 10-15 yrs for short-models, and +10 ~ 15 yrs for proto/pre-series with some backup
 It will result in 20 30 yrs for the construction to start, (consistently to the FCC-integral timeline).
 - Nb3Sn + HTS, > 16 T: much more than 15 yrs for fundamental research and shot model development, and the following years for full scale prototype.
- Continuing, patient R&D effort for high-field magnet will be critically important, to realize energy frontier hadron accelerators in future.

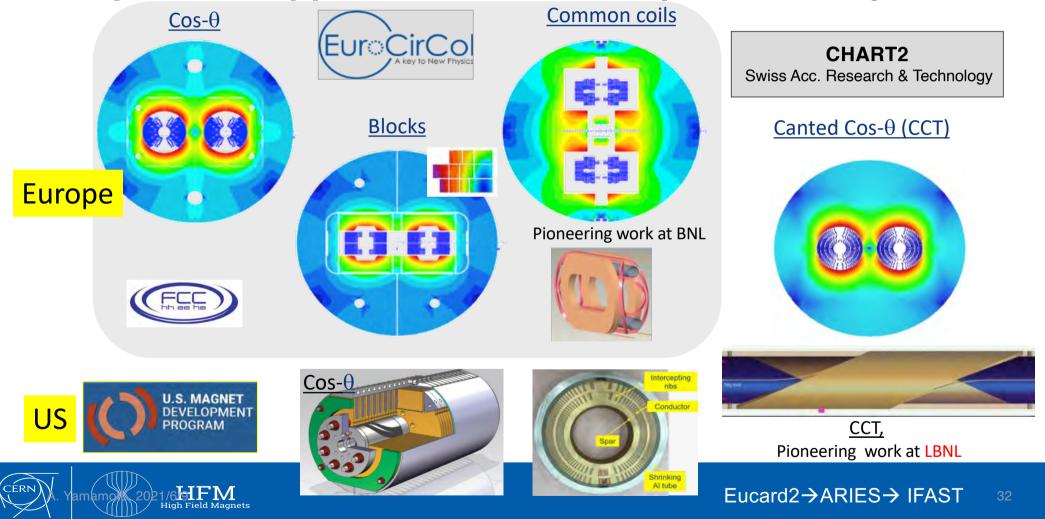
Personal Scope for HFM Development Timeline

for reaching Accelerator Construction and Operation

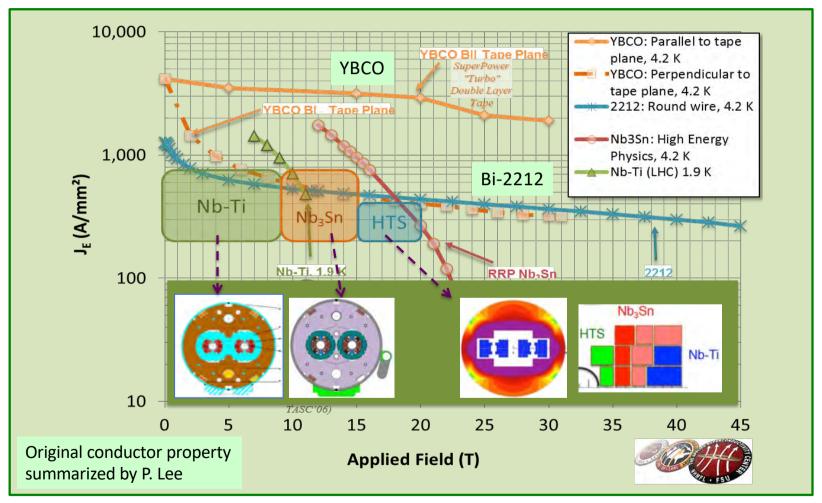
Timeline			~ 20		~ 30				
12~14T <mark>Nb₃Sn</mark>	Short-model R&D	Proto/Pre	e-series	Con	struction	Oper	ation		
14~16T <mark>Nb₃Sn</mark>	Short-model R&D Pro			otype/Pr	e-series	Construction			
>16 T Nb ₃ Sn + HTS	Fundamental a	nd Short M	lodel R&D		Prototype/Pre-series				
Note: LHC experience: NbTi (10 T) R&D started in 1980's > (8.3 T) Production started in late 1990's, in ~ 15 years → LHC Operation started in later 2000's, in ~ 25 years									

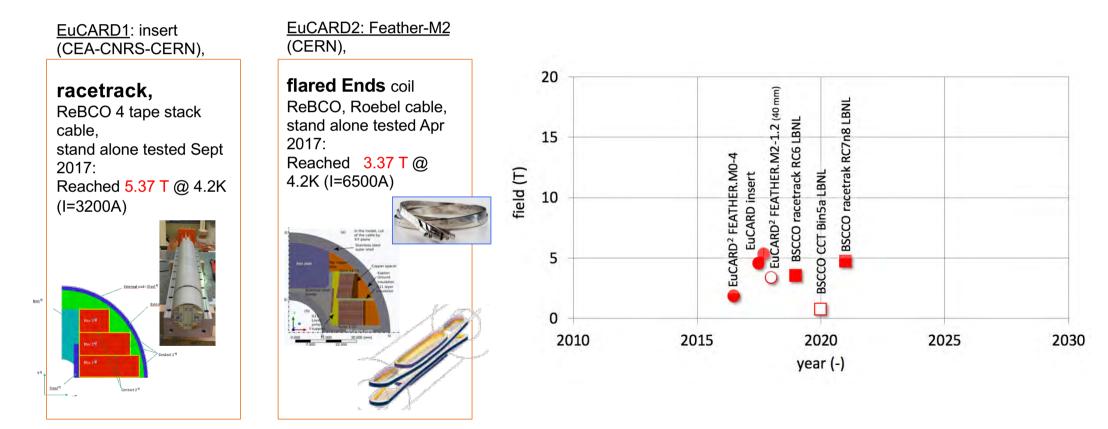

Thank you for your attentions

Appendix


Approximate technically limited timelines of future large colliding beam facilities V. Shiltsev and F. Zimmermann, Review of Modern Physics 93, 015006, 2021

	2020	2025	2030	2035	2040	2045
RHIC	AA, pA, p	р Р				
EIC	TDR	Construction		20 GeV -	→ 140 GeV	
LHeC	TDR	Construction		1.3 TeV		
(HL)-LHC		14 TeV				
CEPC	TDR	Construction	240 GeV	Z W	-	SppC
ILC	Pre-constr'n	Construc	tion	250 GeV		500 GeV
CLIC	TDR, pre-cor	istr'n Co	nstruction	380 Ge ¹	v	1.5 TeV
FCC-ee	TDR, pre-co	nstruction	Constru	iction	Z W 24	:0 GeV → 350 GeV
HE-LHC	R&D, TDR,	prototyping, pre-c	onstruction	Constru	ction	27 TeV
FCC-hh	R&D, TDR,	prototyping, pre-c	onstruction	Constru	ction	100 TeV
Muon Collider	R&D, tests,	TDR, prototyping,	pre-constructio	n Co	nstruction	3 → 14 TeV
Plasma Coll.	R&D, feasil	oility studies, tests	, TDR, prototyp	ing, pre-construct	ion Cons	struction 3 TeV


Possible Scenarios of Future Colliders discussed in ESPPU-2019


Multiple R&D Approaches for 16 T Dipole in Europe and US

High-Field Superconductor and Magnets

Progress in HTS SC magnet Development

