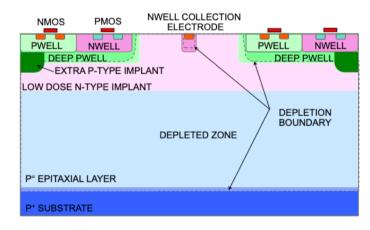
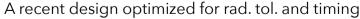
Requirements, emerging technologies and challenges for detectors at future colliders

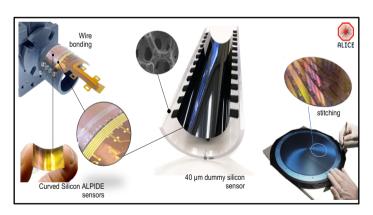
LHCP, 09/06/2021

D. Contardo, IN2P3/IP2I

Upgrades and new collider projects timeline


< 2030	2030-2035	2035-2040	2040-2045	> 2045
BELLE-2 ALICE ITS3 - LS3	EIC ATLAS & CMS - LS4 LHCb - LS4 ALICE 3 - LS4	CLIC ILC ATLAS & CMS - LS5	FCC-ee	FCC- hh Muon Collider


Walk through new experimental paradigms and a (limited) selection of R&D topics

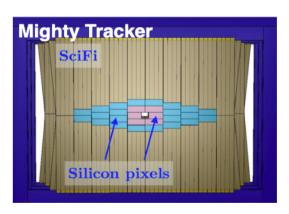

- Representative of other program needs, QCD, rare decays/phenomena, Neutrino, Dark Matter...
- Main resource:
 - ECFA R&D roadmap process: https://indico.cern.ch/event/957057/
 - Input from future facilities: https://indico.cern.ch/event/957057/page/21634-input-from-future-facilities
 - Task force's symposia: https://indico.cern.ch/event/957057/program

Ultimate position precision for Vertex Detectors (σ_{IP})

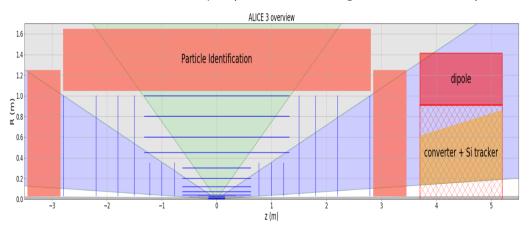
- ALICE ITS3 in LS3 (2025) target $\sigma_{hit} \simeq 3 \, \mu m$, X/X₀* $\simeq 0.05\%$ / layer
 - MAPS 65 nm node (10-20 μ m pitch), 12" wafer with stitching (no PCB), ultra low power \simeq 20 mW/cm² (gas flow cooling), thickness down to 20 μ m (bending) and ultra-light mechanics
- Further project needs
 - Up to O(100) MHz/cm², CLIC up to 6 GHz/cm², FCC-hh up to 30 GHz/cm²
 - Also benefit with BC identification O(ns) time stamp for BIB rejection, possibly ultrafast timing
 - > Step(s) to \leq 28 nm and/or 3D integration while maintaining ultralow power and X/X₀

ALICE ITS3 upgrade proposal

^{*} X/X_0 could become the limiting factor to precision - low X/X_0 beam pipe, layers inside, also for low radius benefit, being considered


Ultimate position precision for Tracking (σ_{Pt})

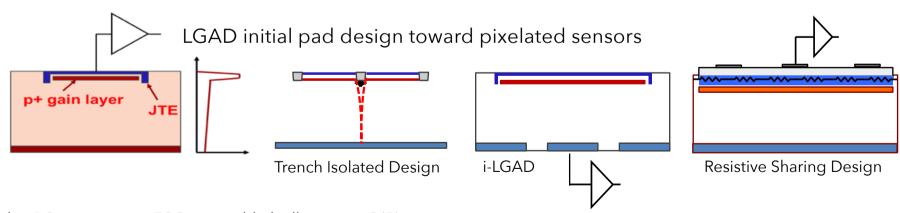
- FCC-ee at Z-peak is the most demanding, BES limit is $\sigma(p_T)/p_T \simeq 10^{-3}$ *
 - > MAPS with granularity tuning, possibly larger size or grouped pixels for power optimization**
 - X/X₀ in tracker typically larger due to detector area O(x20) VD
- First occurrence in LHCb & ALICE-3 LS4, EIC (2031)


LHCb post LS4: first large scale application 30 m²

UT upstream magnet 6 m^2 MT at low r within SciFi 20 m^2

- 50 x 150 100 x 300 pitch
- $\lesssim 5 \times 10^{14} \text{ neg/cm}^2$

Alice-3 (LS4) - MAPS 20 μm pitch - BC timing 25 ns - 10^{13} neq/cm²



^{*} Requirements are usually less demanding but still targeting unprecedented $\sigma_{hit} \simeq 7 \, \mu m$ at low X/X₀ $\lesssim 1\%$ / layer

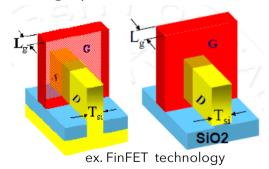
^{**} TPC and DCs are low X/X_0 alternative at relatively low rates e-e colliders - see slide 11

4D tracking with ultrafast timing (σ_t)

- Hit & track-vertex time association provides ultimate BIB/PU rejection at e-e/hh colliders, could enable correction of time-dependent parameters within BCs*
 - MAPS, planar/3D/passive CMOS exploiting timing capabilities w/o amplification
 - Targeting σ_t O(\lesssim 100) ps with specific designs by geometry 3D should be best
 - LGADs w/ amplification, at 100 % fill factor, VD pitch, large area, monolithic design
 - Targeting σ_t O(≤10) ps **
 - \triangleright Ultrafast FE, rise time \simeq to signal O(100's) ps, @ low power consumption
 - \triangleright Detector configuration optimized for X/X₀, eg all/dedicated layers, preferably tracking than VD...

^{*} ex. BES within BC correction at FCC-ee would ideally require O(5) ps precision

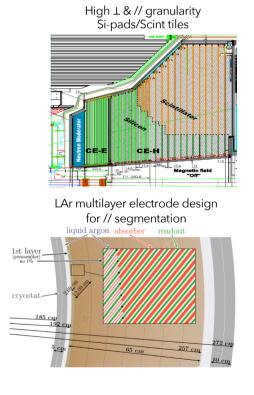
^{**} Also relevant for ToF PID layers, see slide 10


Extreme radiation tolerance

- Major challenge for FCC-hh no current technologies can survive below 30 cm*
 - Both sensors and ASICs
- \triangleright Behavior beyond neq 10^{17} /cm² not really known, models may be too pessimistic
 - 3D, thin & planar ... may approach needs Diamond is a good candidate
 - Other WBG semiconductors GaInP, GaAs, GaN, SiC WBG now commercially used to be evaluated
 - New materials 2D graphene and metamaterials are also options to consider
- ➤ Qualification at NIEL $\gtrsim 10^{17}$ neq/cm² is an issue in itself
- ex. CVD-diamond semiconductor pixel sensors
 - New 3D design with laser graphitization process for thin low $\boldsymbol{\rho}$ electrodes
 - In depth field optimization readout structures
 - Need scaling for production of large areas

ex. ASICs

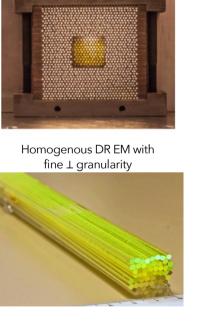
- Deeper nodes in 3D do not guaranty rad. tol.
- Higher dielectric thick oxide (multiple) gates
- Carbon based process beyond CMOS, nanotube, graphene

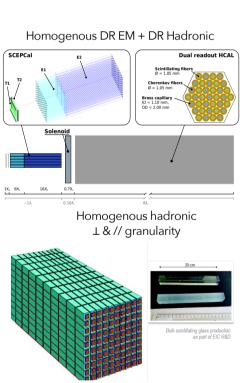

* But also several current technologies would not fulfill needs at relatively large radii, limits already hit at HL-LHC for: ASICs, Si, Scint., SiPMs... increased rad. tol. highly desirable for LHCb upgrade-2 VD, replacement of ATLAS/CMS VD and Timing LGADs

Calorimetry Particle Flow & Dual EM/Had. in all concepts

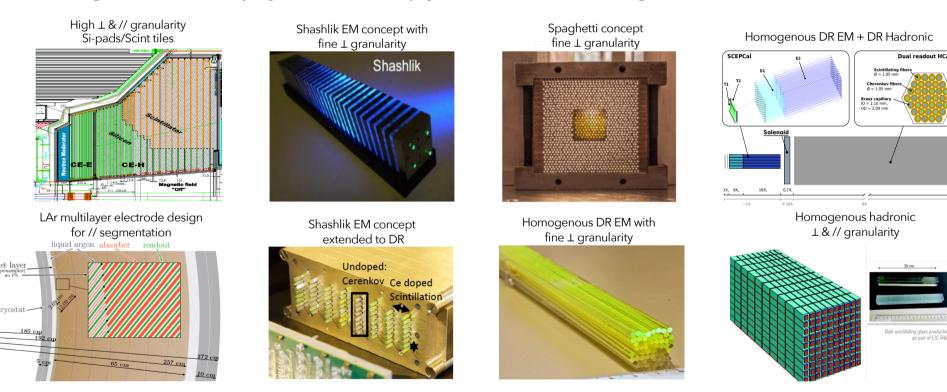
PFlow to profit of det. with best precision (eg. tracker for charged particles)

Shashlik

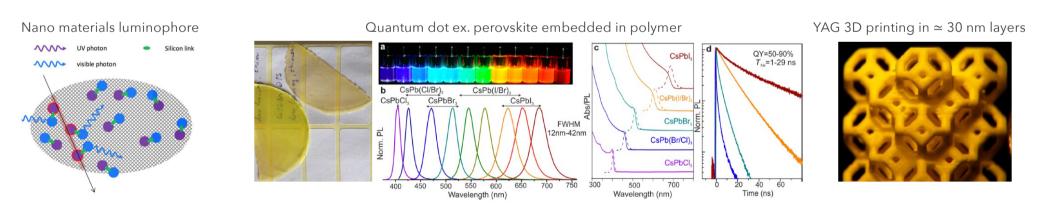

- Mostly driven by ⊥ & // granularity or shower containment
- Dual EM & Had. shower component measurements for e/γ π ID and energy compensation
 - Mostly driven by // segmentation or physical dual signal readout (Cerenkov/Scintillating light)


Shashlik EM concept with

fine ⊥ granularity


Spaghetti concept

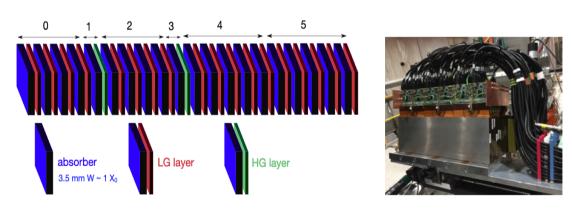
fine ⊥ granularity


Calorimetry Particle Flow & Dual EM/Had. in all concepts

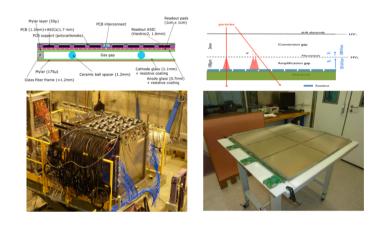
- Different sampling concept are reaching similar ballpark performance, while homogenous design can provide ultimate energy resolution, especially for γs
- Novel designs, heterogenous, can drive experimental choices toward specific environment (background, PU) & physics focus e/γ, jets, momentum range...

5D calorimetry with ultrafast timing*

- Several use cases, PU mitigation, 2γ -vertexing, shower origin (DR), separation of Ceren./Scint. in single material (O(10) GHz sampling) shower reconstruction precision with ML techniques
 - Silicon option, see slides 5 (LAPPD could be an option, see slide 15)
 - Scintillating/Cerenkov light devices**
 - New materials and doping: ex. SiO₂:Ce₃ provide both Cerenkov and Scintillation light
 - Nano materials: luminophore higher light yield, faster, more rad. tol. quantum dots embedded in solution, polymer or on passive material surface, faster, possible tuning of λ -emission with dot size
 - Heterogenous materials, exploiting 3D printing for unconventional shapes
 - Ultrafast analog or digital photoconverters SiPM(SPAD) adapted to new materials, see slide 15



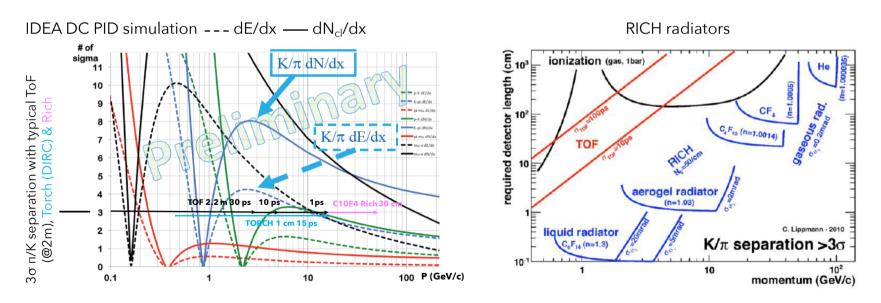
^{*} First implementation @ $\sigma_t \simeq 50$ ps per cell in CMS HGC - overall precision depends on # cells (energy), 80 MHz sampling in CMS Crystal ECAL Next step LHCb Upgrade-2 SPACAL, Shashlik design with σ_t O(10) ps


^{**} Also relevant for ToF PID layers, see slide 10, ex. CMS LYSO crystal layer MTD

Digital high granularity calorimetry

- Measure energy by hit counting
 - ➤ MAPS for EM section**
 - Granularity versus performance & power dissipation, compactness sampling fraction
 - Scintillating tiles, RPCs, MPGDs for Had. section
 - Granularity versus performance & power dissipation, compactness sampling fraction
 - New resistive designs for MPGDs RPWell MicroMegas (see slide 12 and 16)

ALICE LS3 2025 FOrwardCALorimeter heterogenous design and prototype

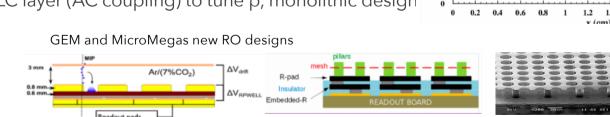


RPC & MicroMegas 2 bits (3 thresh.) semi-digital in 1m³ prototype (GEM layers in preparation)

^{*} Monolithic and/or 3D integration CMOS sensors with pads can also be considered for analog calorimetry for compactness

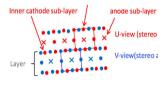
Particle Identification, extending p_T coverage

- TPC or Drift Chambers (DC), dE/dx and/or dN_{cl}/dx
 - Crossing at 1 -2 GeV requires another measurement well adapted to barrel also provides tracking
- RICH, β through Cerenkov angle
 - Different refractive index and expansion volumes needed to cover p-range adapted to forward regions
- DIRC, combining Cerenkov angle (reflection) and ToP ToF
 - Thin quartz radiators w/ or w/o expansion for intermediate p-range both in barrel and forward regions
- ToF, direct β measurement
 - Si/Scint./MPGD thin layer(s) adapted to cover low-intermediate p-range both in barrel & forward regions



ILC TPC simulation

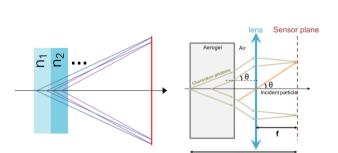
ILC TPC simulation


TPC - DC with dE/dx and dN_{cl}/dx

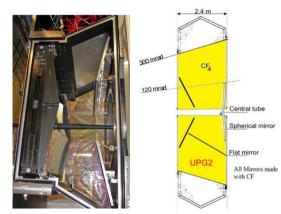
- dE/dx, typical resolution 5% for 1 m.bar
 - High pressure can improve PID (and p-range)
- $ightharpoonup dN_{cl}/dx$, $\gtrsim x2$ better resolution at same depth
 - In x-y space in TPCs (diffusion may be a limiting factor)
 - High granularity MPGD RO, possibly 3D with σ_t O(1) ns
 - In time in DC
 - Signal sampling @ ≥ 1 GHz
- Combination could be optimal at p relativistic rise
- For tracking TPC & DC provide O(100) x $\sigma_{hit} \simeq 100 \, \mu m$ & low X/X₀
 - \triangleright ex. IDEA DC @ FCC-ee 1.6 (5%) X/X₀ barrel(endcap), $\sigma(p_T)/p_T \simeq 3 \times 10^{-3}$ *
 - Carbon wires new assembly techniques
 - ex. TPC GEM and MicroMegas RO
 - Pixel pitch O(50) μm, resistive DLC layer (AC coupling) to tune ρ, monolithic design

High granularity resistive AC designs RPWELL (left) & MM middle, InGrid CMOS on timepix monolithic (right) - eco-friendly gas Ar:CO2 - high rate sparkles capability for muon detection

effective detector length L (m * bar)

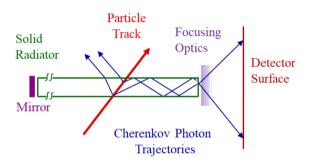


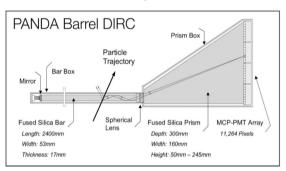
MEG-2 He Drift Chamber

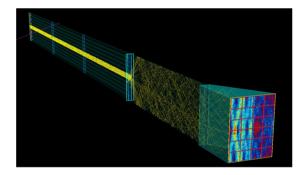

^{*} With a Si wrapping layer at outer radius

RICH with new designs and radiator materials

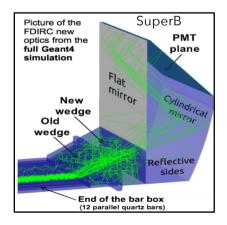
- ex. LHCb (gas) up to p \simeq 100 GeV, $\sigma_{\Theta} \simeq$ 0.2 mrad
 - Light optical elements in acceptance higher granularity with longer lever arm and/or smaller pixel size, photosensors with high QE in green to enhance signal for timing
 - · Light mirrors, high reflection coating
 - MPPC with 5 mm pitch, high rad. tol.
- ex. EIC (gas) up to $p \approx 50 \text{ GeV}$
 - ➤ Option for High Pressure RICH with Ar at 3.5(2) bar ($\simeq C_4F_{10}/CF_4$ 1 bar)
- ex. ALICE-3 & EIC (aerogel) down to $p \approx 10 \text{ MeV/c}$
 - ➤ Multiple-refractive index (left) or lens focusing (right) radiators
 - > Tunable refractive index within new materials
 - Photonic crystals in 1D/2D/3D very thin layers O(100) nm
 - Metamaterials metallic wire or nanomaterials with layer thickness $< \lambda$ creating an effective medium

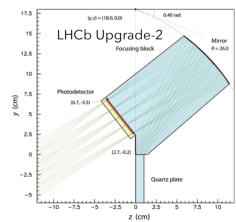

- \triangleright Ultrafast timing σ_t O(≤ 50) ps to exploit same γ-Cerenkov arrival time for bgk rejection
 - SiPM/LAPPD see slide 15

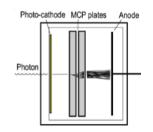


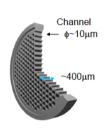

LHCb current and LS4 upgrades

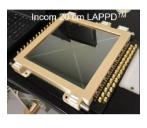
DIRC with focusing and ultrafast timing for 3D (x-y-t)

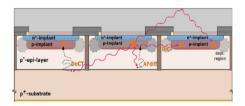

- Fused Silica Quartz radiator O(1) cm thick, up to $p \approx 10 \text{ GeV}$
 - \triangleright σ_{Θ} down to 0.5 mrad, with high granularity MCP-PMTs and/or expansion lever arm
 - $ightharpoonup \sigma_{\rm t} \simeq 10\text{-}15 \; \mathrm{ps} \; \mathrm{with} \; \mathrm{MCP\text{-}PMT} \; (\mathrm{SiPM}) \; \mathrm{O}(\lesssim 50) \; \mathrm{ps} \; \mathrm{SPTR} \; (30 \; \gamma \; / \; \mathrm{track} \; \mathrm{in} \; \mathrm{LHCb} \; \mathrm{TORCH})$
- Lens focusing designs, ex. Panda, IEC new hybrid bars & expansion design (right)

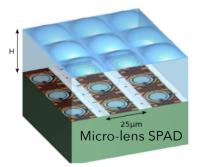


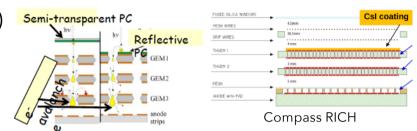

- Reflection focusing designs, ex. SuperB, LHCb upgrade-2
 - In LHCb ToF alone at 10 m & $\sigma_t \simeq 10$ ps cover up to p $\simeq 10$ GeV

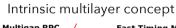


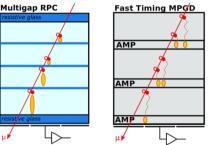


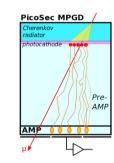

Photo Detectors high QE, ultrafast for single-γ, rad. tol.

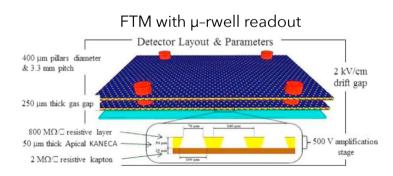

- MCPM-PMT
 - 2 " square, 64 x 64 pixels LHCb TORCH
 - LAPPD* large area 20 cm²
 - Cheaper materials ex. borosilicate glass, 20 µm pores
 - SPTR (HPK) down to $\sigma_t \simeq 34 \text{ ps}$
- ALD coating to improve CE and rad. tol.
- Al layer to protect photocathode for improved rad. tol.
- ► Hybrid design with pixel ASIC integration in vacuum tube, $\sigma_{hit} \simeq 10$ μm, $\sigma_{t} \simeq 10$ ps, 2.5 Ghit/s LHCb-2
- SiPM
 - Analog design, integrating charge on pixels
 - > SPAD digital, counting pixel hits, in CMOS process / 3D integ. design
 - Improved σ_{hit} and σ_{t}^{*} but higher DCR & lower fill factor
 - Micro-lens array design to compensate fill factor effect
- New materials (WBG), ex. GaInP, GaAs, SiC, GaN smaller pixels
 - Improve rad. tol. (low DCR)
 - Improve QE, particularly in UV for noble liq./ultrafast devices (Cerenkov)*

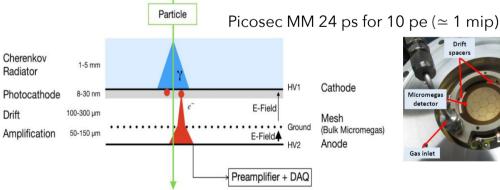


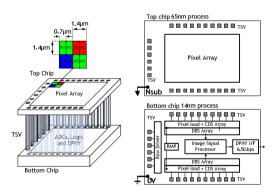

^{*} SPAD 50 µm pitch $\sigma_t \simeq$ 20 ps compared to \simeq 30(80) ps with 1(3x3) mm² SiPMs

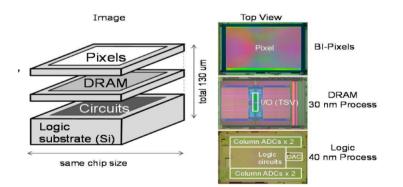

^{**} Also relevant to TPC/Cerenkov vessels for neutrino & DM experiments

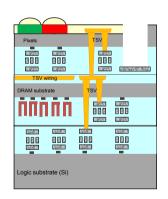

Gas detectors for photo-detection and ultrafast ToF


- Multi-GEM, MM, or hybrid with recent RO (see slide 12)
 - Minimize IBF ≤ 3%
 - Improve photocathode QE and rad. tol.
 - ex. Hydrogenated diamond films in spray techniques Nano-diamond (gold) grains (UV-sensitive)
- Ultrafast timing layers
 - Multigap RPCs, 24 x 160 µm gaps for $\sigma_t \simeq 10$ -20 ps in O(5) mm
 - Materials for low p, mechanical challenges
 - Fast Timing MPGD
 - Multiple thin amplification gaps
 - MM with Cerenkov radiator and photocathode
 - New materials for photocathode, ex DLC coating for rad. tol.








3D integration and deep node technologies

- Sensitive layer + ASICs + Silicon photonics transceiver (for ≥100 Gbps)
 - Optimize layer technologies to functionalities
- Stacking with high density bonding
 - Flip chip bumps, liq. phase, metal-metal diffusion, nano-porous gold bumps ≤ 10 µm pitch, anisotropic conductive films...
- Stacking with Trough Silicon Via
 - Enable ultralow pixel pitch*, more RO functions, lower dead areas & X/X₀ with thinning
 - ex. CMOS image sensor 3D integration exist at Samsung and Sony in deep nodes

Samsung: 1.4 µm pixels in 65 nm & 14 nm FIN-FET (3D transistors) readout, wafer level stacking

opto electronics or voltage regulations

digital signal processing

analogue front end, ADC

3D layer thinned to 3 μ m design for 960 fps Sony(left) layers thinned to 3 μ m Samsung (right) 1.2 μ m pixel pitch, 2.5 TSV 6.3 μ m in 28 nm logic 20 nm DRAM

^{*} Ultralow pitch could have interest for inclined tracks

Outlook

- Tremendous technology opportunities and new ideas exist to prepare unprecedented performance for next generation of detectors, keys to this new era:
 - 3D nano-scale new materials & process
 - 4th dimension, time measurement
 - Heterogenous designs
 - ML reconstruction techniques
- System, production, operation aspects and costs need to be considered
- Collaborative effort and joint budgets are more than ever crucial to access expensive technologies and allow efficient top-up of developments addressing several project needs

Glossary of acronyms

- 1) ALD Atomic Layer Deposition
- 2) BC bunch crossing
- 3) BES Beam Energy Spread
- 4) BIB Beam Induced Background
- 5) Bgd Background
- 6) DIRC Detection of Internal Reflected Cerenkov light
- 7) DLC Diamond Like Carbon
- 8) DR Dual Readout
- 9) LGADS Low Gain Avalanche Photodiodes
- 10) MAPS Monolithic Active Pixel Sensors
- 11) MPPC- Micro Pixels Photo Converters (SipMs, MCP-PMT)
- 12) PU Pile-Up
- 13) RO readout
- 14) SPTR Single Photon Time Resolution
- 15) ToP Time of Propagation
- 16) ToF time of Flight
- 17) WBG Wide Band Gap