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Outline
• This talk is not a review of Vector Boson Fusion/Scattering

theory. Way too much to cover in ∼ 15 minutes.
• But in one line: "Theory predictions for VBF and VBS very

advanced due to many novel results in the past few years."
• In this talk I will highlight a few results from the past year

• VBF and Parton Showers: 2003.12435
• VBF at high pt,H: 2105.11399
• Non-factorisable QCD corrections to VBF: 1906.10899 +

2005.11334
• Full NLO for VBS-ZZ: 2009.00411

• Given experimental audience I will try and focus on results
and phenomenology rather than theoretical details.

• For a full review of Vector Boson Scattering Theory (and
experiment) see 2102.10991 and very recently 2106.01393
from VBSCAN...
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From 1909.02845 (ATLAS)

Recent Higgs combination study shows that theory
uncertainties are dominating in the VBF channel despite
“good” theoretical understanding of the process.
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Intrinsic uncertainties in MG5
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• When considering third jet observables very large

discrepancies outside of the scale variation can be observed
• If one includes NLO corrections this discrepancy disappears

and very good agreement is found with the lower order
prediction matched to H7

• PY8 mathcing clearly leads to unphysical predictions
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Intrinsic uncertainties in POWHEG
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• POWHEG can be matched to H7 and PY8. Here we pick
angular ordered H7 and PY8 with both its default recoil and
a local initial-final recoil

• Only small differences for hard observables
• For the third jet we see the same “unphysical” behaviour of

PY8 with its default recoil scheme, although the effect is
smaller than in MG5_aMC due to POWHEG handling the
first emission itself

Slide 8/26 — Alexander Karlberg — VBF/VBS Theory



L H C P 2 0 2 1

Comparing all generators
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• Comparing all generators we see a clear picture
• For hard observables we find some shape differences,

typically at the O(10%)

• However, this effect shrinks if one were to compare
normalised distributions
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Comparing all generators
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• When considering higher jet multiplicities the discrepancies

increase a lot
• Not surpising given less robust hard perturbative input
• In particular the Monte Carlos predict significantly fewer jets

than the fixed order calculation
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Conclusions
• Large effort in studying Parton Shower effects in VBF
• VBF insensitive to NLO matching prescription but very

sensitive to recoil scheme inside PY8
→ Default recoil scheme unphysical for VBF/VBS processes.

Local recoil can currently only be used with POWHEG.
• For H7 this does not seem to be the case
• Not one “best” prediction but a number of physically sound

predictions
• The uncertainties are typically below 10%, and are

dominated by differences in normalisation rather than
shapes for most observables
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From Silvia Ferrario’s PSR21 talk!
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Disentangling VBF using jet multiplicity

4

Process
σ [fb]
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VH 696                483 74.8                42.7 1.77               0.87
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➔ ggF is dominant for high multiplicities and slightly reduces at high pTH
➔ jet veto (njet = 2)  very effective in reducing ggF, partially effective for VH
➔ At very large pTH disentangling VH from VBF becomes more difficult
➔ Full EW Hjj ≈ VBF + VH



mjj and Δyjj for VBF

12

For large pTH, 
NLOPS is quite 
different from 
NNLO; adding the 
PS to the NLO 
enhances the 
differences instead 
of reducing them!
All the NLOPS 
predictions are 
consistent.

Hw7, dipole shower

envelope obtained from 6 NLOPS
HW7 dipole and AO showers
PWG+PY8, PWG+HW7(AO)
Sherpa CSS and Dire showers
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Non-factorisable corrections pre June 2019

→ Identically zero due to colour conservation

→ Contributes to the three jet cross section [Cam-

panario et al. (2013)], but is known to be kinematically
suppressed in the VBF phase space [Bolzoni et al. (2011)]

→ “Impossible” to compute exactly but esti-
mated to contribute at the permille level
based on colour suppression (1/N2

c ) and
lower order Abelian calculation [Bolzoni et al. (2011)]
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Non-factorisable QCD [1906.10899]
• Recently the non-factorisable QCD corrections were

estimated in the eikonal approximation [Liu, Melnikov, Penin (2019)]

• Result expressed as an expansion in pt,j/
√

s, which is argued
to be small due to large mjj requirement in typical VBF
analyses

• Only leading power available, but argued to have an
uncertainty of a few percent in most regions of phase space

• Result proportional to Born cross section, as real emission
diagrams show up at higher power

dσNNLO
nf =

(
N2

c −1
4N2

c

)
α2

sχnf (q⊥,1,q⊥,2)dσLO

! Colour suppressed but π2-enhanced (Glauber phase)
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Non-factorisable QCD [1906.10899]
VBF cuts: mjj > 600 GeV, ∆yjj > 4.5, yj1yj2 < 0

dσLO = 957 fb, dσNNLO
nf =−3.73 fb, dσNNLO

f =−32 fb

Although non-factorisable corrections are of the order of
several permille, they are clearly suppressed compared to their
factorisable counterparts.

Fiducially they can grow to the percent level:
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Factorisable vs non-factorisable
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• Non-factorisable corrections mostly contained within scale
uncertainty band, but can become important in some regions
of phase space.
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What about VBS?
• VBS usually done in VBS approximation, which neglects

non-factorisable corrections
• At NLO this is exact as for VBF, so no urgency in computing

them
• However, the non-factorisable corrections computed in the

eikonal approximation are finite on their own and only
depend on the topology
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Di-Higgs → VBS
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• Di-Higgs production offer most complicated topologies for VBS

• Very delicate unitarity cancellations lead to enhanced non-factorisable
corrections!

• Should be kept in mind when thinking of NF corrections in VBS

λ= MV σTT σBB σTB Σ

Born 10.393 fb 14.172 fb −23.904 fb 0.662 fb
1-loop NF 0.339% 0.518% 0.399% 2.03%
2-loop NF −0.667% −0.658% −0.666% −0.50%
Full NF −0.327% −0.139% −0.267% 1.52%
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Differential distributions
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• The enhancement is particularly striking when looking at the two hardest
jets

• In magnitude the corrections can quickly become larger than the factorisable
(N)NLO corrections reaching almost 50% in phase space accessible to the
HL-LHC.

• In most other distributions they are contained to around 5%, but still larger
than factorisable NNLO-QCD
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NLO corrections to O(α6)

NLO contributions:

The large EW correction can mostly be explained through the usual LL EW
Sudakov logs

dσLL = dσLO(1+δEW,LL)

δEW,LL =
α

4π

{
−4CEW

W log2

(
Q2

M2
W

)
+2bEW

W log

(
Q2

M2
W

)}
≈−16.4%
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Large NLO-QCD corrections

• Extremely large NLO-QCD corrections to tri-boson channels

• This is due to diagrams with three resonant bosons opening up at this level

• It leads to significant NLO-QCD corrections when Mjj is small

→ Must include tri-boson state for meaningful VBS measurement

Slide 24/26 — Alexander Karlberg — VBF/VBS Theory



L H C P 2 0 2 1

NLO distributions

• Even more pronounced differentially

• Clear that one can only talk about VBS for very tight Mjj and ∆yjj cuts

• Otherwise all channels and in particular tri-boson channels need to be
included
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Conclusions
• Many exciting theory advances in both VBF and VBS in

recent years.
• Many detailed studies ongoing in VBF to pin down the

process.
• Full NLO corrections known to all VBS processes → large

EW corrections.
• Most important take-home messages:

• Default recoil scheme of Pythia8 unphysical for VBF/VBS
processes. Local recoil can currently only be used with
POWHEG.

• Not possible to talk about VBS approximation outside of
very tight selection cuts (and even then still theoretically
problematic). Future generators need to take all
contributions into account.
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