VBS/VBF measurements SEXPERIMENT (without final-state photons) at ATLAS

7-12 June 2021 Paris (France), Sorbonne Université (IN2P3/CNRS,IRFU/C

Karolos Potamianos, on behalf of the ATLAS Collaboration

LHCP2021

The Ninth Annual Conference on Large Hadron Collider Physics

9th Annual Conference on LHC Physics June 7-12, 2021

Online

Probing VBF and VBS :: Motivation

- Important tests of Electroweak and Strong interaction
- They directly probe EW boson self-interactions
- They are a portal to
 - Understanding Electroweak Symmetry Breaking
 - Probing BSM physics

Measurements:

- Fiducial and differential cross-sections
- Looking for anomalous couplings (EFT)
- Probing EW boson polarisation

Probing VBF and VBS :: What we measure

Cannot directly measure VBF/VBS

- Significant interference with other diagrams with same order in
- **Extracting** VBF/VBS component is **not gauge invariant**
- We can only measure electroweak production of VVjj (VBS) or Vjj (VBF)
- Moreover, QCD/strong production is much larger than EW (excl. W[±]W[±]jj)

Probing Electroweak Symmetry Breaking

- VBS at high energy subject to **delicate cancellation between terms**
 - \circ σ(W_LW_L→ W_LW_L) grows with energy w/o Higgs boson
 - Very sensitive to shifts in the trilinear or quartic gauge coupling

Standard Model Production Cross Section Measurements

Status: March 2021

Karolos Potamianos, University of Oxford

LHCP - 7 June 2021

UNIVERSITY OF

See talk by Ben Smart in this session for VBF/VBS measurements with photons 6

VBF/VBS Event Signature

- Two jets with large rapidity separation and large invariant mass (m_{jj})
- One or two **central** vector bosons (V=W or Z)

Karolos Potamianos, University of Oxford

Candidate VBS ZZjj event

Detailed event selection in backup

- Splitting in 4 regions according to:
 - Number of jets between the 2 leading jets (gap jets)
 - Centrality of the Z boson: $\xi_z = |y_{II} \frac{1}{2} (y_{j1} + y_{j2})| / |\Delta y_{jj}|$
- Yields one EW-enhanced signal region and 3 strongenhanced (control) regions

Karolos Potamianos, University of Oxford

- Affecting both QCD/strong and EW Zjj
- Mis-modelling of QCD Zjj especially acute in high-m_{jj} (signal region)
- Using data-driven background estimate

8

Zjj Production :: Fitting Procedure

Maximum likelihood fit performed to extract the EW Zjj signal

- Bin-by-bin weight for strong Zjj, separate between low and high centrality (linked between the two N_{jet} regions)
- Applying linear function to strong Zjj to correct for residual N_{jet} dependence
- Using same bin-by-bin weights for EW Zjj across all regions

<u>EPJ C 81 (2021) 163</u>

Zjj Production :: Fitting Procedure

Zjj Production :: Results

11

- Fiducial cross-section measurement in m_{jj} , $|\Delta y_{jj}|$, $p_{T,II}$ and $\Delta \phi_{jj}$ in SR
 - Inclusive cross-section also measured in CR
 - Data compared to various generators (for EW and strong)
- EW Zjj signal extracted for each of the 3 strong Zjj MC generators
 - Taking the result (midpoint) and dominant uncertainty from the envelope of 3 measurements
 - Integrated cross-section of 37.5 ± 3.5 (stat) ± 5.5 (sys) fb
 - In agreement with SM prediction of 39.5 ± 3.4 (scale) ± 1.2 (PDF) from Herwig7 + VBFNLO

Effective Field Theory Interpretation

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i$$

Constraining dim-6 operators in Warsaw basis • CP-even: \mathcal{O}_W , \mathcal{O}_{HWB} ; CP-odd: $\tilde{\mathcal{O}}_W$, $\tilde{\mathcal{O}}_{HWB}$ m_{jj} [GeV] $|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2 \operatorname{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6}) + |\mathcal{M}_{d6}|^2$

Linear term is dominating: including |Md₆|² has no big effect

Wilson	Includes	95% confidence	e interval [TeV ⁻²]
coefficient	$ \mathcal{M}_{\mathrm{d6}} ^2$	Expected	Observed
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]
	yes	[-0.31, 0.29]	[-0.19, 0.41]
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]
	yes	[-0.12, 0.12]	[-0.11, 0.14]
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]
	yes	[-3.11, 2.10]	[-6 31 1 01]
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]
	yes	[-1.06, 1.06]	[0.23, 2.35]

Look Elsewhere Effect: there is a 6.2% probability for t<u>he SM to be outside of 95%</u> CL when conside Wilg these Instruction of the second seco

Inclusive ZZjj Production

Detailed event selection in backup

Predicted fiducial σ [fb]

 $1.14 \pm 0.04(\text{stat}) \pm 0.20(\text{theo})$

ZZ(QCD)

Others

1500

- Extracting inclusive cross-section in two SRs
- SR: EW selection + Z-mass (II) window

Measured fiducial σ [fb]

 $1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$

lllljj

llvvii

- + 2 jets with y_{i1} . $y_{i2} < 0$, $m_{ii} > 400/300$ GeV, $|\Delta y_{ii}| > 2$
- Large bkg. from WZ and non-resonant II in Ilvvjj

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
EW ZZjj	$20.6\pm~2.5$	12.3 ± 0.7
QCD ZZjj	77 ± 25	17.2 ± 3.5
$QCD \ ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	_	21.4 ± 4.8
WZ		22.8 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	114 ± 26	78.4 ± 6.2
Data	127	82

2500

m_{ii} [GeV]

Electroweak ZZjj Production

- Using BDT to separate EW and QCD ZZjj
- Also fitting QCD CR to constrain background
- **EW ZZjj cross-section : 0.82 ± 0.21 fb** (one of the smallest measured by ATLAS)

	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	5.5 (3.9) σ
$\ell\ell u u j j$	$1.2 (1.8) \sigma$
Combined	5.5 (4.3) σ

Photon-induced WW :: $\gamma\gamma \rightarrow$ WW

Karolos Potamianos, University of Oxford

Photon-induced WW :: $yy \rightarrow WW$

4444 Total uncertainty

$\sigma(\gamma\gamma \rightarrow WW) = 3.13 \pm 0.31(\text{stat}) \pm 0.28(\text{sys}) \text{ fb} = 0$ Observation: 8.4 σ $\int_{1000}^{1200} \int_{1000}^{1200} \int_{1000}^$

600

	Signal region		Control regions		
<i>n</i> trk	n _{trk} :	= 0	$1 \le n_{\text{trk}}$	≤ 4	
$p_{\mathrm{T}}^{e\mu}$	> 30 GeV	< 30 GeV	> 30 GeV	< 30 GeV	
$\gamma\gamma \to WW$	174 ± 20	45 ± 6	95 ± 19	24 ± 5	
$\gamma\gamma \to \ell\ell$	5.5 ± 0.3	39.6 ± 1.9	5.6 ± 1.2	32 ± 7	
Drell–Yan	4.5 ± 0.9	280 ± 40	106 ± 19	4700 ± 400	
$qq \rightarrow WW$ (incl. gg and VBS)	101 ± 17	55 ± 10	1700 ± 270	970 ± 150	
Non-prompt	14 ± 14	36 ± 35	220 ± 220	500 ± 400	
Other backgrounds	7.1 ± 1.7	1.9 ± 0.4	311 ± 76	81 ± 15	
Total	305 ± 18	459 ± 19	2460 ± 60	6320 ± 130	
Data	307	449	2458	6332	
Source of uncertainty Impact [% of the fitted cross sect					
Experimental					
Track reconstruction			1.1		
Electron energy scale and re	esolution, and effic	ciency	0.4		
Muon momentum scale and	l resolution, and et	fficiency	0.5		
Misidentified leptons, syster	matic		1.5		
Misidentified leptons, statis	tical		5.9		
Other background, statistica	ıl		3.2		
Modelling					
Pile-up modelling			1.1		
Underlying-event modelling	g		1.4		
Signal modelling	2.1				
WW modelling	4.0				
Other background modelling 1.7					
Luminosity 1.7					
Total			8.9		

Talk by Christophe Royon June 8 @ 15:27 CEST

Karolos Potamianos, University of Oxford

The Start of a Long Journey

UNIVERSITY OF OXFORD

These sets of results using Run-2 data are ony the beginning...

As we learned to understand the backgrounds and signal, we can proceed with further probes:

- Differential distributions
- Probing polarisation
- Preparing for HL-LHC

Stay tuned on this exciting field!

ZOOM room after session: <u>https://cern.zoom.us/j/68001154922</u> (Same password as this session)

The Vjj and VVjj final states are an **essential probe of EWSB**

- Delicate cancellation of terms to achieve unitarity
- But very challenging to measure precisely

Comprehensive program within ATLAS to measure Vjj and VVjj

Background modelling is key to precisely measure these processes

More ATLAS results in the pipeline: Stay Tuned!

Karolos Potamianos, University of Oxford

ATL-PHYS-PUB-2021-005

VBF, VBS, and	Iriboson Cross Section Measurements Status:	March 2021 $\int \mathcal{L} dt$	Reference
γγγ	$\sigma = 72.6 \pm 6.5 \pm 9.2 \text{ tb} \text{ (data)}$	20.2	PLB 781 (2018) 55
$Z_{\gamma\gamma} \rightarrow \ell \ell \gamma \gamma$	$\sigma = 5.07 + 0.73 - 0.68 + 0.42 - 0.39 \text{ fb (data)}$ $ATLAS \text{ Preliminary}$	20.3	PRD 93, 112002 (2016)
$-[n_{iet} = 0]$	$\sigma = 3.48 + 0.61 - 0.56 + 0.3 - 0.26$ fb (data) MCFM NLO (theory)	20.3	PRD 93, 112002 (2016)
$W_{\gamma\gamma} \rightarrow \ell \gamma \gamma \gamma$	$\sigma = 6.1 + 1.1 - 1 \pm 1.2$ (b (data) MCFM NLO (theory) $\sqrt{s} = 7.8.13$ TeV	A 20.3	PRL 115, 031802 (2015)
$-[n_{iet} = 0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1 - 0.9 \text{ fb} \text{ (data)}$	20.3	PRL 115, 031802 (2015)
$WW\gamma \rightarrow e \nu \mu \nu \gamma$	σ = 1.5 ± 0.9 ± 0.5 fb (data) VBFNLO+CT14 (NLO) (theory)	20.2	EPJC 77 (2017) 646
WWW. (tot.)	$\sigma = 0.65 + 0.16 - 0.15 + 0.16 - 0.14 \text{ pb} \text{ (data)}$	79.8	PLB 798 (2019) 134913
	$\sigma = 330 \pm 200 + 150 - 160 \text{ Ib} (\text{data})$ Madgraph5 + aMCNLO (the order)	20.3	EPJC 77 (2017) 141
– WWW <i>→ℓvℓv</i> jj	$\sigma = 0.24 + 0.39 - 0.33 \pm 0.19 \text{ (b (data)}$	20.3	EPJC 77 (2017) 141
$-WWW \rightarrow \ell \nu \ell \nu \ell \nu$	$\sigma = 0.31 \pm 0.35 = 0.33 \pm 0.32 \pm 0.35$ bb (data) Madgraph5 + aMCNLO (theory)	20.3	EPJC 77 (2017) 141
WWZ , (tot.)	$\sigma = 0.55 \pm 0.14 + 0.15 - 0.13 \text{ pb} (\text{data})$ Sherpa 2.2.2 (theory)	79.8	PLB 798 (2019) 134913
Hii VBE	$\sigma = 4 \pm 0.5 \pm 0.4$ pb (data) LHC-HXSWG (theory)	139	ATLAS-CONF-2020-027
	$\sigma = 2.43 + 0.5 - 0.49 + 0.33 - 0.26 \text{ pb (data)}$ LHC-HXSWG YR4 (theory)	20.3	EPJC 76 (2016) 6
– H(→WW)ii VBF	$\sigma = 0.85 \pm 0.1 + 0.17 - 0.13 \text{ pb} (data)$ NNLO QCD and NLO EW (theory)	139	ATLAS-CONF-2020-045
	$\sigma = 0.51 + 0.17 - 0.15 + 0.13 - 0.08 \text{ pb (data}$	20.3	PRD 92, 012006 (2015)
	$\sigma = 65.2 \pm 4.5 \pm 5.6 \text{ (b (data)}$ $LHC-HXSWG (theory)$ $Stat \oplus Syst$	139	ATLAS-CONF-2019-029
– H(→γγ)jj VBF	$\sigma = 42.5 \pm 9.8 + 3.1 - 3 \text{ fb} \text{ (data)}$ LHC-HXSWG (theory)	20.3	ATLAS-CONF-2015-060
	$\sigma = 49 \pm 17 \pm 6 \text{ (b) (data)}$	4.5	ATLAS-CONF-2015-060
//jj EWK (M(jj) > 1 TeV)	$\sigma = 43.5 \pm 6 \pm 9 \text{ fb} (data)$ Powheg+Pythia8 NLO (theory)	20.2	EPJC 77 (2017) 474
– M(ii) > 500 GeV	$\sigma = 159 \pm 10 \pm 26 \text{ (b (data)} \\ \text{Powheg+Pythia8 NLO (theory)} \\ \text{Stat} \oplus \text{syst}$	20.2	EPJC 77 (2017) 474
(II) > 300 Get	$\sigma = 144 \pm 23 \pm 26 \text{ fb (data)}$ Powheg+Pythia8 NLO (theory)	4.7	EPJC 77 (2017) 474
	$\sigma = 37.4 \pm 3.5 \pm 5.5 \text{ (b (data)} \qquad \text{LHC pp } \sqrt{S} = 7 \text{ Iev}$	139	EPJC 81 (2021) 163
	$\sigma = 10.7 \pm 0.9 \pm 1.9 \text{ (b (data)} \\ PowhegBox (NLO) (theory) \\ \hline \bullet \\ \hline \hline \bullet \\ \hline \hline \bullet \\ \hline \hline \bullet \\ \hline \hline \hline \bullet \\ \hline \hline \bullet \\ \hline \hline \hline \hline$	20.3	JHEP 04, 031 (2014)
Zvii FWK	$\sigma = 7.8 \pm 1.5 + 1.4 - 1.3 \text{ fb} (data)$ Madgraph5 + aMCNLO (theory) Stat \oplus SVSt	36.1	PLB 803 (2020) 135341
	$\sigma = 1.1 \pm 0.5 \pm 0.4 \text{ fb} \text{ (data)}$ VBFNLO (theory)	20.3	JHEP 07 (2017) 107
$\gamma \gamma \rightarrow W/W$	$\sigma = 3.13 \pm 0.31 \pm 0.28 \text{ fb (data)} \\ \text{MG5_aMCNLO+Pythia8} \times \text{Surv. Fact (0.82) (theory)} $	139	arXiv:2010.04019
	$\sigma = 6.9 \pm 2.2 \pm 1.4 \text{ fb (data)}$ HERWIG++ (theory)	20.2	PRD 94 (2016) 032011
(WV+ZV)jj EWK	$\sigma = 45.1 \pm 8.6 \pm 15.9 - 14.6 \text{ (b (data)} \\ \text{Madgraph5} \pm \text{aMCNLO} + \text{Pythia8} \text{ (theory)} $	35.5	PRD 100, 032007 (2019)
//±\//±;; E\//K	$\sigma = 2.89 + 0.51 - 0.48 + 0.29 - 0.28 \text{ fb (data)}$ PowhegBox (theory)	36.1	PRL 123, 161801 (2019)
	$\sigma = 1.5 \pm 0.5 \pm 0.2 \text{ fb} \text{ (data)}$ PowhegBox (theory)	20.3	PRD 96, 012007 (2017)
	σ = 0.57 + 0.14 - 0.13 + 0.07 - 0.05 fb (data) Sherpa 2.2.2 (theory)	36.1	PLB 793 92019) 469
	$\sigma = 0.29 + 0.14 - 0.12 + 0.09 - 0.1 \text{ fb (data)}$ VBFNLO (theory)	▲ 20.3	PRD 93, 092004 (2016)
ZZjj EWK	σ = 0.82 ± 0.18 ± 0.11 fb (data) Sherpa 2.2.2 (theory)	139	arXiv:2004.10612 [hep-ex
	00 05 10 15 2	0 25 30 35	
nianos, University	of Oxford LHCP - 7 June 2021	oata/theory	

Karolos Potamianos, University of Oxford

ADDITIONAL MATERIAL

Unraveling Electroweak Symmetry Breaking

EW WZjj Production

WZjj (36 fb⁻¹): 5.3σ PLB 793 (2019) 469

a'''						*	
q'' q''' q''' q''' q'''' q''''''''''''''''''''''''''''''''''''	•••••••••••••••••••••••••••••	A2 40 50 50 60 70 70 70 70 70 70 70 70 70 7	TLAS = 13 TeV, 36.1 fb ⁻¹ WZjj SR	Data W ² Z-EW W ² Z-CO ZZ Misid. leptons tt+V tZj and VVV Tot. unc.	herpa Δσ ^{fid.} /Δ ψ _j [fb/rad]	TLAS	s = 13 TeV, 36.1 fb ⁻¹
Source	Uncertainty [%]	Data /	-	n ununununununununununununununununununu		·····	
WZjj-EW theory modelling WZjj-QCD theory modelling WZjj-EW and $WZjj$ -QCD interference	4.8 5.2 1.9	- -1	-0.5 0	0.5 BDT Sc	 		2 Δφ _{jj} [ra
Jets	6.6			SR	WZjj–QCD CR	<i>b</i> -CR	ZZ-CR
Pile-up	2.2		Data	161	213	141	52
Electrons	1.4		Total predicted	167 ± 11	204 ± 12	146 ± 11	51.3 ± 7.0
Muons	0.4		WZjj-EW (signal)	44 ± 11	8.52 ± 0.41	1.38 ± 0.10	0.211 ± 0.004
b-tagging	0.1		WZjj-QCD	91 ± 10	144 ± 14	13.9 ± 3.8	0.94 ± 0.14
MC statistics	1.9		Misid. leptons ZZ_{ii} -OCD	7.8 ± 3.2 11.1 ± 2.8	14.0 ± 5.7 18.3 ± 1.1	23.5 ± 9.6 2.35 ± 0.06	0.41 ± 0.18 40.8 ± 7.2
Misid. lepton background	0.9		tZj	6.2 ± 1.1	6.3 ± 1.1	34.0 ± 5.3	0.17 ± 0.04
Other backgrounds	0.8		$t\bar{t} + V$	4.7 ± 1.0	11.14 ± 0.37	71 ± 15	3.47 ± 0.54
Luminosity	2.1		ZZjj-EW VVV	1.80 ± 0.45 0.59 ± 0.15	$\begin{array}{rrrr} 0.44 \pm & 0.10 \\ 0.93 \pm & 0.23 \end{array}$	0.10 ± 0.03 0.13 ± 0.03	4.2 ± 1.2 1.06 ± 0.30
Total Systematics	10.7						

Karolos Potamianos, University of Oxford

LHCP - 7 June 2021

.....

 $\Delta \phi_{jj} [rad]$

EW W[±]W[±]ii Production

q' q'' q'' q''' q''' q'''' q''''

Source	Impact [%
Experimental	
Electrons	0.6
Muons	1.3
Jets and $E_{\rm T}^{\rm miss}$	3.2
b-tagging	2.1
Pileup	1.6
Background, statistical	3.2
Background, misid. leptons	3.3
Background, charge misrec.	0.3
Background, other	1.8
Theory modeling	
$W^{\pm}W^{\pm}jj$ electroweak-strong interference	1.0
$W^{\pm}W^{\pm}jj$ electroweak, EW corrections	1.4
$W^{\pm}W^{\pm}jj$ electroweak, shower, scale, PDF & α_s	2.8
$W^{\pm}W^{\pm}jj$ strong	2.9
WZ	3.3
Luminosity	2.4

25 ATLAS VS = 13 TeV, 36.1 fb⁻¹ 20 ATLAS VS = 13 TeV, 36.1 fb⁻¹ VS = 10 TeV, 37.1 fb

Events / 100 GeV

15

10 5 500 1000 1500 2000 2500 300 m_{ii} [GeV]

Total uncertainty

Observation using 36 fb⁻¹

W[±]W[±]jj (36 fb⁻¹): 6.5σ PRL 123 (2019) 161801

	e^+e^+	e^-e^-	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^-\mu^-$	Combined
WZ	$1.48\pm~0.32$	$1.09\pm~0.27$	$11.6~\pm~1.9$	$7.9~\pm~1.4$	$5.0~\pm~0.7$	$3.4~\pm~0.6$	30 ± 4
Non-prompt	$2.2~\pm~1.1$	$1.2~\pm~0.6$	$5.9~\pm~2.5$	$4.7 ~\pm~ 1.6$	$0.56\pm~0.05$	$0.68\pm~0.13$	15 ± 5
e/γ conversions	$1.6~\pm~0.4$	$1.6~\pm~0.4$	$6.3~\pm~1.6$	$4.3~\pm~1.1$			$13.9~\pm~2.9$
Other prompt	$0.16\pm~0.04$	0.14 ± 0.04	$0.90\pm~0.20$	0.63 ± 0.14	$0.39\pm~0.09$	$0.22\pm~0.05$	$2.4~\pm~0.5$
$W^{\pm}W^{\pm}jj$ strong	0.35 ± 0.13	0.15 ± 0.05	$2.9~\pm~1.0$	$1.2~\pm~0.4$	$1.8~\pm~0.6$	$0.76\pm~0.25$	7.2 ± 2.3
Expected background	5.8 ± 1.4	$4.1~\pm~1.1$	28 ± 4	$18.8~\pm~2.6$	$7.7~\pm~0.9$	$5.1~\pm~0.6$	69 ± 7
$W^{\pm}W^{\pm}jj$ electroweak	$5.6~\pm~1.0$	$2.2~\pm~0.4$	24 ± 5	$9.4~\pm~1.8$	$13.4~\pm~2.5$	$5.1~\pm~1.0$	60 ± 11
Data	10	4	44	28	25	11	122
$\sigma^{\text{fid.}} = 2.89^{+0}_{-0}$	$_{0.48}^{0.51}$ (stat.	$)^{+0.24}_{-0.22}$ (6	exp. syst.	$)^{+0.14}_{-0.16}$ (r	nod. syst	.) +0.08 (lumi.) fb

Karolos Potamianos, University of Oxford

LHCP - 7 June 2021

UNIVERSITY OF

EW VVjj Production

q

a!!!

VVjj (36 fb⁻¹): 2.7σ PRD 100 (2019) 032007

	,	4	L	_AIL	A5	Vs=13 TeV, 35	.5 fb ', OI	oserved	S
					Tot	Tot.	(Stat.	Syst.)	/ent
	~	$\sim W/Z$	2-lepton –	-	Sta	^{t.} 1.97 ^{+0.83} -0.77	(±0.50	$^{+0.65}_{-0.59})$ —	Ш
لر	March 1		1-lepton –			$0.33^{+0.53}_{-0.52}$	(±0.25	+0.47)-	
کم کے	C	$\sim W/Z$	0-lepton	-	⊢; •-;-4	2.47 ^{+ 1.33} - 1.22	(±0.80	+ 1.05 - 0.93) —	
		Co	mbination	- H	н	$1.05^{+0.42}_{-0.40}$	(±0.20	+ 0.37 - 0.34) —	
		$q^{\prime\prime}$	L	0	2	4 6	8	10	
							Best fit	μ=σ/σ _{SM}	
Fiducial pl	hase space	Predicted $\sigma_{\rm EWV}^{\rm fid,SM}$	$_{Vjj}^{\rm ff}$ [fb]		Measured	$\sigma_{{\rm EW}VVjj}^{{\rm fid,obs}}$	[fb]	_	.+
	0-lepton	4.1 ± 0.3 (theo.)		10	$.1 \pm 3.3 ({\rm st}$	at.) $^{+4.2}_{-3.8}$ (s	$\operatorname{syst.})$		ostf.
Merged	1-lepton	$6.1 \pm 0.5 ({\rm theo.})$		2	$0.0 \pm 1.5 (\mathrm{st}$	at.) $^{+2.9}_{-2.8}$ (s	$\operatorname{syst.})$		ata/F
	2-lepton	$1.2 \pm 0.1 (\text{theo.})$		2	$4 \pm 0.6 ({\rm st})$	at.) $^{+0.8}_{-0.7}$ (s	syst.)	_	
	0-lepton	$9.2 \pm 0.6 ({\rm theo.})$		22	$.8 \pm 7.4 ({\rm st}$	at.) $^{+9.4}_{-8.5}$ (s	$\operatorname{syst.})$		Drefii
Resolved	1-lepton	16.4 ± 1.0 (theo.)		5	$.5 \pm 4.1 ({ m st}$	at.) $^{+7.7}_{-7.5}$ (s	$\operatorname{syst.})$		stfit/
	2-lepton	6.0 ± 0.4 (theo.)		11	$.8 \pm 3.0 ({\rm st}$	at.) $^{+3.8}_{-3.5}$ (s	syst.)	_	Ъ
	0-lepton	13.3 ± 0.8 (theo.)		32	$9.9 \pm 10.7 (s$	$(tat.)^{+13.5}_{-12.3}($	(syst.)		
Inclusive	1-lepton	22.5 ± 1.5 (theo.)		7	$7.5 \pm 5.6 ({\rm st})$	at.) $^{+10.5}_{-10.2}$ ((syst.)		
	2-lepton	7.2 ± 0.4 (theo.)		14	$.2 \pm 3.6 ({\rm st}$	at.) $^{+4.6}_{-4.2}$ (s	$\operatorname{syst.})$		

Zjj Production :: Event Selection

Dressed muons	$p_{\rm T} > 25 \text{ GeV and } \eta < 2.4$
Dressed electrons	$p_{\rm T} > 25 \text{ GeV}$ and $ \eta < 2.37$ (excluding $1.37 < \eta < 1.52$)
Jets	$p_{\rm T} > 25 \text{ GeV and } y < 4.4$
VBF topology	$N_{\ell} = 2$ (same flavour, opposite charge), $m_{\ell\ell} \in (81, 101)$ GeV
	$\Delta R_{\min}(\ell_1, j) > 0.4, \ \Delta R_{\min}(\ell_2, j) > 0.4$
	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{j1} > 85 \text{ GeV}, \ p_{\text{T}}^{j2} > 80 \text{ GeV}$
	$p_{\rm T,\ell\ell} > 20 \text{ GeV}, \ p_{\rm T}^{\rm bal} < 0.15$
	$m_{jj} > 1000 \text{ GeV}, \ \Delta y_{jj} > 2, \ \xi_Z < 1$
CRa	VBF topology $\oplus N_{jets}^{gap} \ge 1$ and $\xi_Z < 0.5$
CRb	VBF topology $\oplus N_{jets}^{gap} \ge 1$ and $\xi_Z > 0.5$
CRc	VBF topology $\oplus N_{jets}^{gap} = 0$ and $\xi_Z > 0.5$
SR	VBF topology $\oplus N_{jets}^{gap} = 0$ and $\xi_Z < 0.5$

Karolos Potamianos, University of Oxford

Zjj Production :: MC Generators

Process	Generator	ME accuracy	PDF	Shower and hadronisation	Parameter set
EW Zjj	Powheg-Box v1	NLO	CT10nlo	Pythia8 + EvtGen	AZNLO
	Herwig7 + Vbfnlo	NLO	MMHT2014lo	Herwig7 + EvtGen	default
	Sherpa 2.2.1	LO (2-4j)	NNPDF3.0nnlo	Sherpa	default
Strong Zjj	Sherpa 2.2.1	NLO (0–2j), LO (3–4j)	NNPDF3.0nnlo	Sherpa	default
	MadGraph5_aMC@NLO	NLO (0–2j), LO (3–4j)	NNPDF2.3nlo	Pythia8 + EvtGen	A14
	MadGraph5	LO (0-4j)	NNPDF3.01o	Pythia8 + EvtGen	A14
VV	Sherpa	NLO (0–1j), LO (2–3j)	NNPDF3.0nnlo	Sherpa	default
tī	Powneg-Box v2 hvq	NLO	NNPDF3.0nnlo	Pythia8 + EvtGen	A14
VVV	Sherpa	LO (0–1j)	NNPDF3.0nnlo	Sherpa	default
W+jets	Sherpa	NLO (0–2j), LO (3–4j)	NNPDF3.0nnlo	Sherpa	default

Karolos Potamianos, University of Oxford

Zjj Production :: (Pre-Fit) Event Yields

Sample	$Z \rightarrow ee$	$Z \rightarrow \mu \mu$		
Data	10870	12 125		
EW Zjj (Powheg+Py8)	$2670 \pm 120 \pm 280$	$2740 \pm 120 \pm 290$		
EW Zjj (Sherpa)	$1280 \pm 60 \pm 140$	$1350 \pm 60 \pm 150$		
EW Zjj (Herwig7+Vbfnlo')	$2290 \pm 100 \pm 210$	$2350 \pm 100 \pm 220$		
Strong Zjj (Sherpa)	$13500\pm 600\pm 4500$	$15100\pm 600\pm 5000$		
Strong Zjj (MG5+Py8)	$13140 \pm 480 \pm \text{ N/A}$	$14810 \pm 540 \pm \text{N/A}$		
Strong <i>Zjj</i> (MG5_NLO+Py8')	$8800 \pm 300 \pm 1000$	$10000 \pm 400 \pm 1200$		
$ZV (V \rightarrow jj)$	$179 \pm 8 \pm 6$	$178 \pm 8 \pm 6$		
Other VV	$45 \pm 2 \pm 2$	$45 \pm 2 \pm 2$		
$t\bar{t}$, single top	$92 \pm 8 \pm 6$	$98 \pm 8 \pm 6$		
$W(\rightarrow \ell \nu)$ +jets, $Z(\rightarrow \tau \tau)$ +jets	negligible	negligible		

Karolos Potamianos, University of Oxford

Zjj Production :: Results

- Also performing measurement using of observables: $|\Delta y_{jj}|$, $p_{T,II}$ and $\Delta \phi_{jj}$

ZZjj Production :: Event Selection

	$\ell\ell\ell\ell\ell jj$	$\ell\ell u u jj$
Electrons	$p_{\rm T} > 7~{ m GeV}, \eta < 2.47$	$p_{\rm T} > 7 {\rm ~GeV}, \eta < 2.5$
Muons	$p_{\rm T} > 7 {\rm ~GeV}, \eta < 2.7$	$p_{\rm T} > 7 {\rm ~GeV}, \eta < 2.5$
Jets	$p_{\rm T} > 30~(40)~{\rm GeV}$ for $ \eta < 2.4~(2.4 < \eta < 4.5)$	$p_{\rm T} > 60~(40)~{\rm GeV}$ for the leading (sub-leading) jet
ZZ selection	$p_{\rm T}>20,20,10~{\rm GeV}$ for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-}-m_Z + m_{\ell^{'}+\ell^{'-}}-m_Z $ $m_{\ell^+\ell^-}>10~{\rm GeV} ~{\rm for~lepton~pairs}$ $\Delta R(\ell,\ell')>0.2$ $60 < m_{\ell^+\ell^-}<120~{\rm GeV}$	$\begin{array}{l} p_{\mathrm{T}} > 30 \; (20) \; \mathrm{GeV} \; \mathrm{for} \; \mathrm{the} \; \mathrm{leading} \; (\mathrm{sub-leading}) \; \mathrm{lepton} \\ \mathrm{One} \; \mathrm{OSSF} \; \mathrm{lepton} \; \mathrm{pair} \; \mathrm{and} \; \mathrm{no} \; \mathrm{third} \; \mathrm{leptons} \\ 80 < m_{\ell^+ \ell^-} < 100 \; \mathrm{GeV} \\ E_{\mathrm{T}}^{\mathrm{miss}} > 130 \; \mathrm{GeV} \end{array}$
Dijet selection	Two most energetic jets with $y_{j_1} \times y_{j_2} < 0$ $m_{jj} > 300 \text{ GeV}$ and $\Delta y(jj) > 2$ $m_{jj} > 400 \text{ GeV}$ and $\Delta y(jj) > 2$	

Karolos Potamianos, University of Oxford