Dark showers in ATLAS and CMS

- Introduction
- Emerging jets
- Displaced jets
 - From ZH production with H decays
 - From pair production of neutral scalars
- RECAST from displaced jets: dark-photon jets
- Summary/Outlook
The dark sector

- A very rich phenomenology, depending on the underlying model (symmetries), mediator, couplings, number of families, and masses
 - Lepton-jets, photons, new hadronic showers
 - Multiplicity may be very high or low
 - May have boosted signals, missing energy...

- Lifetime: considered a free parameter
 - Prompt: hadronic exotic searches (resonant & non-resonant)
 - Long lived: striking new signatures

- Challenging analyses
 - Often need complex trigger strategies
 - Novel final states that require dedicated reconstruction techniques
 ▪ New algorithms, taggers
 - Exciting challenges for experiments!

Aran Garcia-Bellido (Rochester)
Many different signatures

Semivisible jets

Soft unclustered energy

Emerging jets
CMS-EXO-18-001

Displaced Jets
ATL-EXO-17-05
ATL-EXO-17-25
CMS-EXO-19-021
CMS-EXO-20-015
LHCb-PAPER-16-065

SIMP
Trackless jets
CMS-EXO-17-010

Muons

Lepton-jets
ATL-EXO-14-09
LHCb-PAPER-2017-038

Higgs mediated DM
ATL-CONF-21-005
CMS EXO-20-003

Dark Photon jets
ATL-PUB-20-007
CMS: Emerging jets

- Pair produced bifundamental scalars ($X_d \rightarrow Q_d q$)
- Dark quarks Q_d hadronize in hidden sector
 - Dark pions π_d have lifetime and then decay to SM
 \[
 cT \approx 80 \, \text{mm} \left(\frac{1}{\kappa^4} \right) \left(\frac{2 \, \text{GeV}}{f_{\pi_d}} \right)^2 \left(\frac{100 \, \text{MeV}}{m_{\text{down}}} \right)^2 \left(\frac{2 \, \text{GeV}}{m_{\pi_d}} \right) \left(\frac{1 \, \text{TeV}}{m_{X_d}} \right)^4
 \]
 - Multiple secondary vertices within same jet
- Signature: 2 emerging jets + 2 prompt jets
- Selection: 4 AK4 jets, $|\eta|<2$ with $H_T > 900$ GeV
 - 7 signal regions based on:
 - Median of IP$_{2D}$ of tracks within jet
 - p_T fraction of “prompt” tracks in jet $\alpha_{PV} = \frac{\sum_{trk \in PV} p_{trk}^T}{\sum p_T^{trk}}$

Aran Garcia-Bellido (Rochester)
CMS: Emerging jets background estimate

- Signal consists of tracks originating from several vertices at varying IP from PV
 - Sub-jet axes point out radially from PV
 - Heavy flavor jets could mimic the signature of short π_d lifetime
- Multijet QCD (light and b-jets) is the main background
- Estimate fake rate in two γ+jets CRs in data, one with heavy flavor and one without
 - The b-jet fraction of each CR (f_b) is fitted to two MC templates (light and b jets)

\[
\begin{pmatrix}
\epsilon_{f1} \\
\epsilon_{f2}
\end{pmatrix}
= \begin{pmatrix}
f_{b1} & 1 - f_{b1} \\
f_{b2} & 1 - f_{b2}
\end{pmatrix}
\begin{pmatrix}
\epsilon_{fb} \\
\epsilon_{fl}
\end{pmatrix}

\begin{pmatrix}
\epsilon_{fb} \\
\epsilon_{fl}
\end{pmatrix}
= \begin{pmatrix}
\frac{1 - f_{b2}}{f_{b1} - f_{b2}} & \frac{1 - f_{b1}}{f_{b1} - f_{b2}} \\
\frac{1 - f_{b1}}{f_{b2} - f_{b1}} & \frac{1 - f_{b2}}{f_{b2} - f_{b1}}
\end{pmatrix}
\begin{pmatrix}
\epsilon_{fl} \\
\epsilon_{f2}
\end{pmatrix}

\epsilon_f = \epsilon_{fb} f_b + \epsilon_{fl} (1 - f_b)
\]

$P(EMJ) \propto \epsilon_f \epsilon_f (1 - \epsilon_f)(1 - \epsilon_f) + \ldots$

Validation in QCD-rich sample
Observed events in agreement with expected background in all 7 SR

<table>
<thead>
<tr>
<th>Set number</th>
<th>Expected</th>
<th>Observed</th>
<th>Signal</th>
<th>m_X_{DK} [GeV]</th>
<th>$m_{\pi_{DK}}$ [GeV]</th>
<th>$c\tau_{\pi_{DK}}$ [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>168 ± 15 ± 5</td>
<td>131</td>
<td>36.7 ± 4.0</td>
<td>600</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>31.8 ± 5.0 ± 1.4</td>
<td>47</td>
<td>(14.6 ± 2.6) × 10²</td>
<td>400</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>19.4 ± 7.0 ± 5.5</td>
<td>20</td>
<td>15.6 ± 1.6</td>
<td>1250</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>22.5 ± 2.5 ± 1.5</td>
<td>16</td>
<td>15.1 ± 2.0</td>
<td>1000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>13.9 ± 1.9 ± 0.6</td>
<td>14</td>
<td>35.3 ± 4.0</td>
<td>1000</td>
<td>2</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>9.4 ± 2.0 ± 0.3</td>
<td>11</td>
<td>20.7 ± 2.5</td>
<td>1000</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>7</td>
<td>4.40 ± 0.84 ± 0.28</td>
<td>2</td>
<td>5.61 ± 0.64</td>
<td>1250</td>
<td>5</td>
<td>225</td>
</tr>
</tbody>
</table>
Emerging jet candidate

- Event passes SR1 and SR5
- Jets 1 and 4 pass the EMJ criteria
ATLAS: Higgs to displaced jets

- New pseudoscalar boson a decaying exclusively to $b\bar{b}$, $Z \rightarrow \ell\ell$ used for trigger (allows reach to low jet p_T)
 - Sensitive to $2 < c\tau_a < 20$ mm
 - $M_a \in [15, 55]$ GeV
- Extend std. reco. tracks to Large Radius Tracking
- Standard b-tag algos are ineffecient for long $c\tau$
- DisplacedVertex algorithm: $N_{DVjets} \geq 2$
 - Prune for displaced tracks
 - $N_{trk} > 2$, $m/\Delta R_{max} > 3$ GeV, $r/\sigma_r > 100$, $\max|d_0| > 3$ mm
- At least one central jet with $CHF < 0.045$ or $\alpha_{max} < 0.05$

$$CHF = \frac{\sum_{trk} p_T^{trk} |d_0| < 0.5 mm}{p_T^{jet}}$$

$$\alpha_{PV_i} = \frac{\sum_{trk \in PV_i} p_T^{trk}}{\sum p_T^{trk}}$$

- Bkg validation in orthogonal γ+jets sample
 - DV algo achieves similar efficiency as b-tagging DL1 algorithm
ATLAS: Higgs to displaced jets results

- Control regions defined based on N_{DVjets}
- Use CR to estimate bkgd in $n_{\text{DV}} \geq 2$

No observed events, expected: $1.30 \pm 0.08 \text{(stat)} \pm 0.27 \text{(sys)}$
Pair-production of long-lived neutral scalar X with equal decays to u,d,c,s,b.

- Use displaced jet trigger (H_T and track IP reqs)
- Dijet candidates from all possible pairs of jets (AK4)
- Adaptive vertex fitter (annealing) to find SV applied to each dijet candidate
- Preselection based on SV χ^2/ndof, m_{vtx}, $p_T(vtx)$, second largest IP$_{\text{sig}}$, vtx track energy fraction in dijet, and ζ

<table>
<thead>
<tr>
<th>Secondary-vertex/dijet variable</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex χ^2/ndof</td>
<td><5.0</td>
</tr>
<tr>
<td>Vertex invariant mass</td>
<td>$>4 \text{ GeV}$</td>
</tr>
<tr>
<td>Vertex transverse momentum</td>
<td>$>8 \text{ GeV}$</td>
</tr>
<tr>
<td>Second largest two-dimensional IP significance</td>
<td>>15</td>
</tr>
<tr>
<td>Vertex track energy fraction in the dijet</td>
<td>>0.15</td>
</tr>
<tr>
<td>ζ (charged energy fraction associated with compatible primary vertices)</td>
<td><0.20</td>
</tr>
</tbody>
</table>

Build likelihood discriminant based on: vertex track multiplicity; vertex L_{xy} significance; Cluster RMS

$$L_{xy}^{\exp} = \frac{IP_{2D}^{\text{track}}}{\sin(\phi_{\text{track}} - \phi_{\text{dijet}})} \left(1 - \frac{|IP_{2D}^{\text{track}}|}{R}\right)$$

$$RMS_{\text{cluster}} = \sqrt{\frac{1}{N_{\text{tracks}}} \sum_{i=0}^{N_{\text{tracks}}} \frac{(L_{xy}(i) - L_{xy})^2}{L_{xy}^2}}$$
CMS: $XX \rightarrow qq$ qq displaced jets Likelihood

- **Vertex track multiplicity**
 - Events/1.0 vs. Vertex track multiplicity
 - Data vs. Jet-Jet model with settings $m_R = 300$ GeV, $c_t = 3$ mm

- **Vertex L_{xy} significance**
 - Events/20.0 vs. Vertex L_{xy} significance
 - Data vs. Jet-Jet model with settings $m_R = 300$ GeV, $c_t = 3$ mm

- **Cluster RMS**
 - Events/0.1 vs. Cluster RMS
 - Data vs. Jet-Jet model with settings $m_R = 300$ GeV, $c_t = 3$ mm

- **Likelihood discriminant**
 - Events/0.04 vs. Likelihood discriminant
 - Data vs. Jet-Jet model with settings $m_R = 300$ GeV, $c_t = 3$ mm
Final selection also requires:
- For jet1: $N(3D \text{ prompt tracks}) \leq 1$, $\text{CPEF} < 0.15$
- For jet2: $N(3D \text{ prompt tracks}) \leq 1$, $\text{CPEF} < 0.13$
- $L\text{hood} > 0.9993 \rightarrow N_{\text{obs}} = 1; N_{\text{exp}} = 1.0 \pm 0.2$

$\sigma_{XX} > 0.2 \text{ fb}$ are excluded for $m_X > 1 \text{ TeV}$ for $c\tau_0 \in [3, 130] \text{ mm}$

The lowest σ_{XX} excluded is 0.13 fb, at $c\tau_0 = 30 \text{ mm}$ and $m_X > 1 \text{ TeV}$

Charged prompt energy fraction:

$$CPEF = \frac{\sum E_{\text{trk}, |d_0| < 0.5\text{mm}}}{\sum E_{\text{trk}}}$$
ATLAS: Displaced jets with RECAST

- Based on CalRatio displaced jets (decay in HCAL)
 - With dedicated CalRatio triggers for jets with high values of E_H/E_{EM}
 - Includes L1 topological selection \rightarrow low m_Φ
 - Train NN with L_{xy}, L_z, E_H/E_{EM} to get L_{xy}, L_z for each jet
 - Then use BDT to classify each jet as LLP signal, SM multi-jet or Beam-Induced-Background

- Recast into Higgs mediator/dark photon production
 - Dark photons are boosted, decay into quarks
 - Validated with signal from original analysis
 - Powerful use of Analysis Preservation tools
ATLAS: Dark-photon jets results

\(m_H = 125 \text{ GeV} \) (new limit in this region)

\(m_H = 800 \text{ GeV} \)
Exciting new signatures with dark shower phenomenology

- No excess in the data so far
- Investigating regions of parameter space for BSM previously unexplored at colliders
- Still room for new searches in ATLAS and CMS
- But stay tuned, several new analyses in the works!

Strong collaboration with theorists to tune models, implement signal MC tools...

Overlap with LLP searches can shed light on some models/final states

Need to develop new triggers, reconstruction techniques, algorithms for jet tagging, and background estimation

Detector upgrades will bring new trigger capabilities, better pointing calorimeters, more timing information...

Summary/Outlook

ATLAS Preliminary

- **H → ss**
 - ID/MS vtx, low EMF/trk jets: 36.1
 - s lifetime: 3.6-62 mm

- **VH with H → ss → bbbb**
 - 2l + 2 displaced vertices: 139
 - 2 e, μ- jets: 20.3

- **FRVZ H → 2γ + X**
 - 2 μ- jets: 36.1

- **FRVZ H → 4γ + X**
 - 2 μ- jets: 36.1

- **H → Z0Z0**
 - displaced dimuon: 32.9

- **H → ZZ0**
 - 2 e, μ + low-EMF trackless jet: 36.1

CMS Preliminary

- **H→XX(10%), X→ee, m_X = 125 GeV, m_e = 20 GeV**
 - X

- **H→XX(10%), X→μμ, m_μ = 125 GeV, m_μ = 20 GeV**
 - X

- **H→XX(10%), X→bb, m_b = 125 GeV, m_b = 40 GeV**
 - X

- **H→XX(10%), X→bb, m_b = 125 GeV, m_b = 40 GeV**
 - X

- **H→XX(10%), X→bb, m_b = 125 GeV, m_b = 40 GeV**
 - X

- **H→XX(10%), X→bb, m_b = 125 GeV, m_b = 40 GeV**
 - X

- **H→XX(10%), X→bb, m_b = 125 GeV, m_b = 40 GeV**
 - X

RHIC/ALICE

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.
Extra material

Z(ℓℓ)H, Higgs to displaced jets

Zoomed view of secondary vertices
Complementarity of H decay searches

ATLAS Preliminary

\(\sqrt{s} = 13 \text{ TeV} \)

\(m_H = 125 \text{ GeV} \)

Prompt

- \(m_a = 15 \text{ GeV} \)
- \(m_a = 35 \text{ GeV} \)
- \(m_a = 55 \text{ GeV} \)

CR+(MS1+MS2)

- \(m_a = 5 \text{ GeV} \)
- \(m_a = 8 \text{ GeV} \)
- \(m_a = 15 \text{ GeV} \)
- \(m_a = 25 \text{ GeV} \)
- \(m_a = 40 \text{ GeV} \)

\(m_3 = 40 \text{ GeV} \)
By assuming the flight direction of the SV is aligned with the dijet direction, we can estimate the position of the SV using track parameters:

- Vertex L_{xy} can be estimated based on the track IP$_{2D}$, track curvature R and the dijet direction:

$$L_{xy}^{\text{exp}} = \frac{IP_{2D}^{\text{track}}}{\sin(\phi_{\text{track}} - \phi_{\text{dijet}})} \left(1 - \frac{|IP_{2D}^{\text{track}}|}{R} \right)$$

- Then tracks are clustered based on the similarity in L_{xy}^{exp} using hierarchical agglomerative clustering algorithm.

- The cluster that is closest to the reconstructed vertex (i.e. AVF vertex) is chosen.
CMS: Higgs to displaced jets

- **Backgrounds:**
 - 90% Z → ℓℓ+jets: estimated in low Z p_T CR
 - 10% tt: estimated in eμ+jets CR

- **Tagging variables for DV algorithm:**
 - Track IP_{sig} in xy ; α_{max}
 - Track angle Θ_{2D}: between ray from PV to track innermost hit and jet direction
 - Jets are DV: log(IP_{sig})>1.25, log(Θ_{2D})>-1.5, α_{max}<0.45
CMS: Higgs to displaced jets results

- Global fit to CR(tt)+CR(Z+jets)+SR: get bkgs with scale factors
 - Largest systematic uncertainty assigned to SFs
- 7 validation regions defined by inverting one or more tag vars.
 - Perform fit in VRs as well
 - Fit closes within uncertainty for all validation samples
- Results also include $S \rightarrow d \bar{d}$ search

![Graph of CMS Preliminary data]

$N_{\text{obs}} = 3$

$N_{\text{bkg}} = 3.5 \pm 1.8$
CMS: Strongly Interacting massive particles

- **Signature:** pair of narrow neutral jets (neutron-like)
 - Large χ cross-section yields early showers in ECAL
 - Small χ cross-section yields punch-through and MET

- **Selection:**
 - $N_{jets} = 2$, $p_T > 550$ GeV, $\Delta\phi(j_1,j_2)>2$
 - Photon & conversion veto, MET filters
 - $N_{vtx} \geq 2$, $\text{ChF}_{j_1,j_2} < 0.05$
 - Use data CR to estimate $\text{ChF}(p_T,\eta)$

- **SIMP-nucleon interactions are uncertain for $m_{\chi}>100$ GeV**

<table>
<thead>
<tr>
<th>ChF selection criterion</th>
<th>Background prediction from data</th>
<th>Obs.</th>
<th>SIMP signal $[m_{\chi}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 GeV</td>
<td>100 GeV</td>
<td>1000 GeV</td>
</tr>
<tr>
<td>< 0.20</td>
<td>898 ± 30 (stat) ± 33 (syst)</td>
<td>969</td>
<td>1300 ± 58</td>
</tr>
<tr>
<td>< 0.15</td>
<td>209 ± 10 (stat) ± 17 (syst)</td>
<td>229</td>
<td>1269 ± 57</td>
</tr>
<tr>
<td>< 0.10</td>
<td>26.6 ± 2.2 (stat) ± 9.3 (syst)</td>
<td>30</td>
<td>1197 ± 56</td>
</tr>
<tr>
<td>< 0.07</td>
<td>5.1 ± 0.6 (stat) ± 4.1 (syst)</td>
<td>4</td>
<td>1153 ± 55</td>
</tr>
<tr>
<td>< 0.05</td>
<td>1.27 ± 0.22 (stat) ± 3.40 (syst)</td>
<td>0</td>
<td>1101 ± 53</td>
</tr>
</tbody>
</table>

16.1 fb$^{-1}$ (13 TeV)