Searches for disappearing tracks, HSCPs and stopped particles at the LHC

LHCP 2021

Emma Kuwertz on behalf of the ATLAS and CMS Collaborations

Searching for long-lived particles

- Though new physics is strongly motivated, we have so far found no direct evidence of beyond Standard Model (BSM) particle production at the LHC
- With no evidence for BSM physics in conventional channels, it's important to invest the time to improve sensitivity to these challenging signatures
- In models with split spectra, very compressed masssplittings or weak couplings, particles become long-lived

- In this talk:
 - Searches for long lived particles using a disappearing track signature
 - Searches for the decays of stopped long-lived particles

Neutral LSP

- Targeting models with higgsino / wino Lightest Supersymmetric Particle (Benchmark for generic Dark Matter models with compressed multiplets)
- Compressed spectrum predicted, with small $\tilde{\chi}_1^\pm \to \tilde{\chi}_1^0$ mass splitting
- Non-negligible $\tilde{\chi}_1^{\pm}$ lifetime:

Pion

(too soft to reconstruct)

Pure wino: $\tau = 0.2 \text{ ns}$ $c\tau \sim 6 \text{ cm}$

Pure higgsino:

$$\tau = 0.02 - 0.05 \text{ ns}$$
 $c\tau \sim 0.7 - 1.4 \text{ cm}$

ATLAS Simulation $\tilde{\chi}_1^0$

Chargino track disappears

Latest results from ATLAS and CMS:

Search for disappearing tracks [CMS] Phys. Lett. B 806 (2020) 135502

Search for long-lived charginos based on a disappearing-track signature [ATLAS] ATLAS-CONF-2021-015

Disappearing tracks [ATLAS-CONF-2021-015]

- ≥ 1 disappearing tracklet: ATLAS
- 4 pixel layer hits
- No SCT hits
- Good χ^2 quality
- Isolated from other tracks
- Isolated from calorimeter activity

Disappearing tracks [Phys. Lett. B 806 (2020) 135502]

CMS

- ≥4 pixel layer hits
- ≥3 missing outer hits
- No missing inner/middle hits
- Good χ^2 quality
- Isolated from other tracks
- Isolated from calorimeter activity

Material scattering and Bremsstrahlung

- ≥ 1 disappearing tracklet: ATLAS
- 4 pixel layer hits
- No SCT hits
- Good χ^2 quality
- Isolated from other tracks
- Isolated from calorimeter activity

Veto calorimeter activity to suppress electron/hadron backgrounds

CMS: $E_{\rm T} < 10$ GeV within $\Delta R = 0.5$

ATLAS: $E_{\rm T} < 5$ GeV within $\Delta R = 0.2$

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

Dominant fake background from random tracks CMS:

- reject tracks with missing inner/middle hits
- estimate random track probability using $Z \to \mu \mu$ + track events

ATLAS:

- estimate using pT template from high-d0 tracklet control region
- Fit to tracklet pT in the signal region

- CMS results benefit from Phase 1 pixel upgrade, extending sensitivity to shorter lifetimes than before
- ATLAS sensitivity boost resulting from addition of Calorimeter veto

higgsino-like $\tilde{\chi}_1^0$

Generic search for long-lived particles that could come to a stop within the detector material...

... these particles subsequently decay some time later, leaving large out-of-time energy deposits within the calorimeters

Time

- Example split-SUSY inspired simplified model with long-lived gluino.
- Gluino binds with SM quarks to form R-hadron.
- R-hadron loses kinetic energy via nuclear scattering and EM interactions.
- Some stop before leaving the detector.

Latest results from ATLAS and CMS:

Search for decays of stopped exotic long-lived particles [CMS] JHEP 05 (2018) 127
Search for decays of stopped long-lived particles [ATLAS] arxiv:2104.03050

Focus on more recent ATLAS result here

Search is performed using empty bunch crossings to minimize collision backgrounds

Require ≥ 1 jet pT>90 GeV (150 GeV in signal regions)

- Calculate fraction of trigger-able time available to detect particle decays across the range of lifetimes:
 - based on LHC bunch structure (LHC filling scheme) and run schedule
- Signal acceptance scales with live time and integrated luminosity
- Non-collision background processes scale with live time

Main backgrounds:

- Cosmic-induced jets
- Beam-induced backgrounds depositing energy in the calorimeters

Use cosmic reconstruction settings to improve out-of-time reconstruction efficiency

- Identify muon segment pairs in opposite detector hemispheres
- Check for proximity to the jet in the event
- Cut on this proximity to reject cosmic backgrounds.
- Extract jet-pT templates from cosmic-enriched regions, and transfer factors from dedicated comic datasets to extrapolate to the signal regions

Data consistent with background expectation in the signal regions

• Exclude gluino masses up to 1.4 TeV in the live time plateau (between 1000 ns and 1000 s)

Updated R-hadron signal generation and simulation: ATL-PHYS-PUB-2019-019

Summary

- Recent searches for disappearing tracks and stopped long-lived particles presented
 - Analyses make use of the complete Run 2 dataset collected at the LHC
- Exploring new methods to enhance sensitivity
 - These searches require specialized techniques, dedicated data samples and often modified reconstruction
 - Implementation of improvements and/or new strategies shown in these results
- Data are compatible with SM predictions
 - So far...
- New results yet to come with the full Run 2 dataset
 - With Run 3 and HL-LHC still ahead.