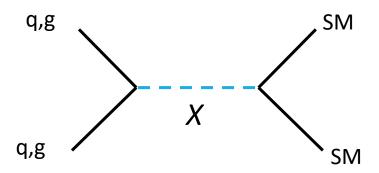


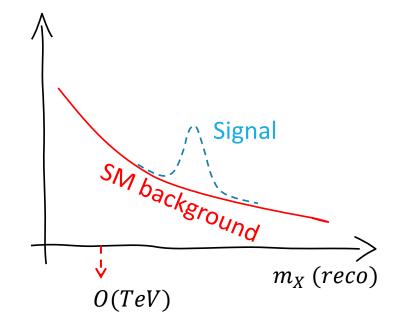
Search for high mass resonances in ATLAS and CMS

CLAUDIO QUARANTA

"SAPIENZA" UNIVERSITY OF ROME AND INFN SEZIONE DI ROMA
(ON BEHALF OF THE ATLAS AND CMS COLLABORATIONS)

Search for new resonances



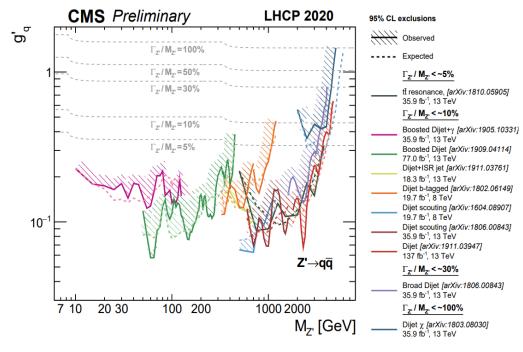

High mass resonances:

- Predicted by many Beyond Standard Model (BSM) theories:
 - GUT, compositeness, warped extra dimension
 - Mediators of interaction between
 SM and Dark Matter (DM) particles

Resonance search:

- Full reconstruction of resonance mass from decay products
- Clear experimental signature: peak over smooth background

Summary of resonance searches

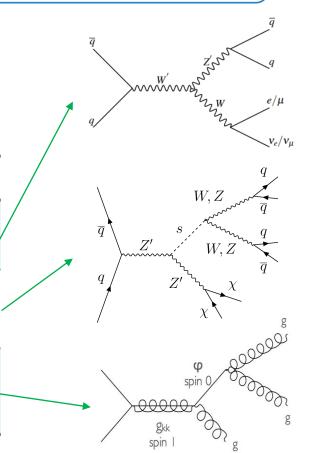


Many efforts from ATLAS and CMS collaborations:

- cover wide range of final states and resonance masses
- No evidence for new physics BSM, even with full Run 2 dataset

Channel	Latest results
$X \rightarrow jj$	JHEP 03 (2020) 145 (ATLAS) JHEP 05 (2020) 033 (CMS)
$X \to \ell \ell$	PLB 796 (2019) 68 (ATLAS) arXiv:2103.02708 (CMS)
$X \to t\bar{t}$	JHEP 10 (2020) 61 (ATLAS) JHEP 04 (2019) 031 (CMS) Junpei Maeda's talk
$X o \ell \nu$	CMS-PAS-EXO-19-017 (CMS) PRD 100 (2019) 052013 (ATLAS) More in Tadej Novak talk
$X \rightarrow diboson$ γ, Z, W, H	Antonis Agapitos talk

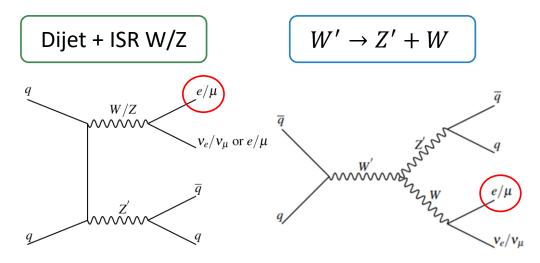
Overview of dijet resonance searches

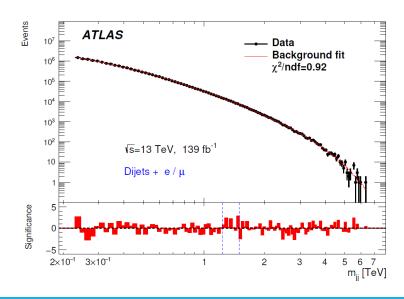

Beyond standard searches

In this phase of the LHC, ATLAS and CMS activity is focused on analysis upgrades

- Extend searches to low resonance mass: next talk by Silvio Donato
- Explore new experimental signatures

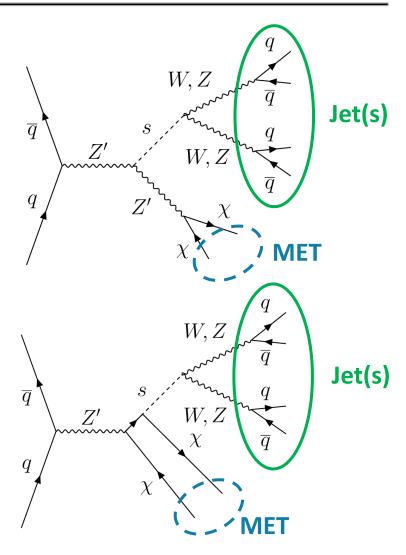
Final state	Process	Links
Dijet + ℓ	$X \rightarrow jj + \ell$	JHEP 06 (2020) 151 ATLAS
Jets + E_T^{miss}	$X \rightarrow E_T^{\text{miss}} + VV$	<u>PRL 126 1218 02</u> ATLAS
Trijet	$X \to Y + j \to 3j$	CMS-PAS-EXO-20-007 CMS




Dijet + lepton

- Extension of standard dijet bump search
 - Require additional isolated high- p_T lepton in the final state
- Strong reduction of QCD multijet background
 - Enhance sensitivity to new physics signals with additional lepton in the final state

Model	Mass limit
$Z' + ISR W \rightarrow qq\ell\nu$	$m_{Z'} < 1.2 TeV$
$W' \to Z' + W \to qq\ell\nu$	$m_{Z'} < 2 TeV$

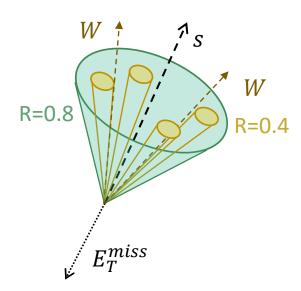


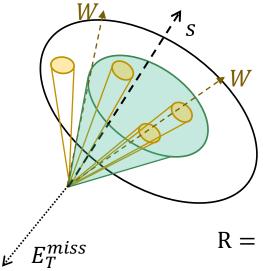
Dark Matter + VV resonance

- Existing searches for Dark Matter (χ) consider many $E_T^{miss} + X$ final states (<u>Varun Sharma's</u> talk):
 - o $E_T^{miss} + q$ (monojet, monotop)
 - \circ $E_T^{miss} + \gamma$ (monophoton)
 - o $E_T^{miss} + V$ (mono-Z, mono-W)
 - \circ $E_T^{miss} + H$ (mono-Higgs)
- $\succ E_T^{miss} + VV$: unexplored final state
 - o Z' = mediator of interaction between quark and Dark Matter
 - o $s = \text{Dark Higgs (couples to } \chi \text{ and } Z')$
 - s decays to two vector bosons
 - Dominant for $m_s \in [160; 360]$ GeV
 - focus on hadronic final states

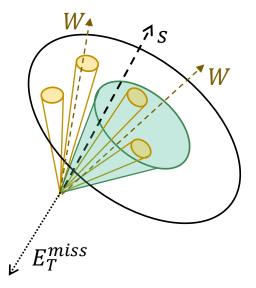
Jet substructure from VV decays

Several final state topologies considered


Merged: $E_T^{miss} > 300 \ GeV$

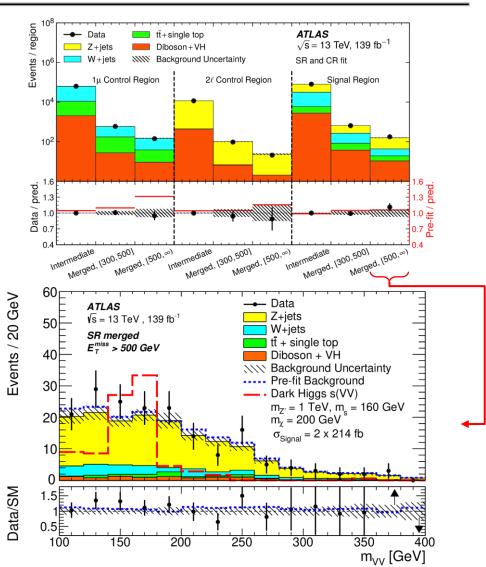

- 1 large jet: reconstructed from calo + track info
- 4-prong topology (τ_{43} ; τ_{42} Nsubjettiness ratios)

Intermediate: $E_T^{miss} > 200 \ GeV$


- $100 < m^{jet} < 400 \, GeV$
- 1 large jet
- 1 small-R jet

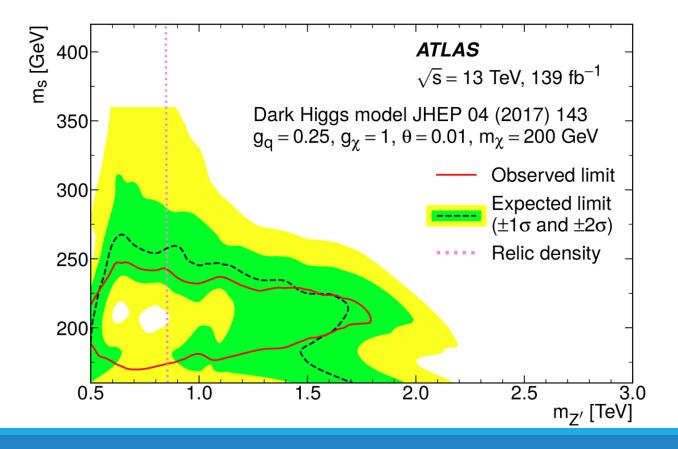
- $60 < m^{jet} < 100 \, GeV$
- 1 large jet
- 2 small-R jets with $m_{ij} \approx m_W$

$$R = 2.5$$



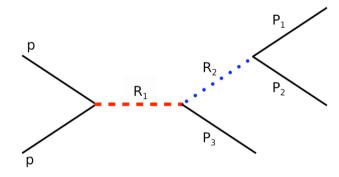
Results

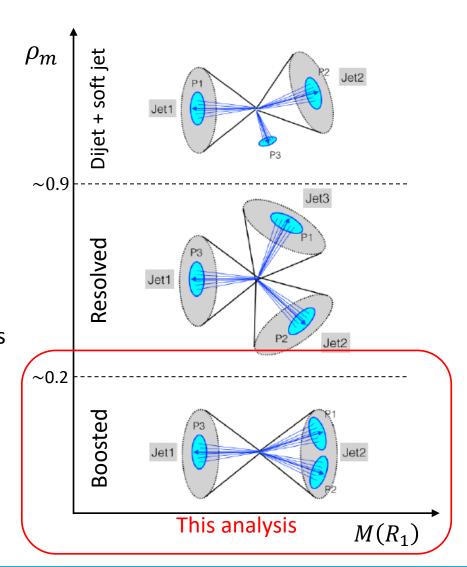
- ➤ Main SM background: *V* + *jets*
 - Modeled using Control Regions
 (CR) in data requiring 1 or 2
 additional leptons
- Main observable:
 - reconstructed mass of the VV system (m_{VV})
- ightharpoonup Simultaneous fit to m_{VV} distributions in all categories and regions
 - No evidence for new resonances



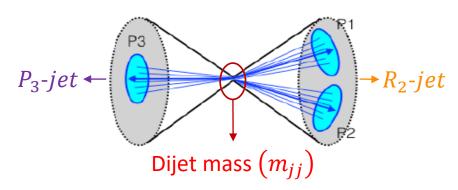
Limits for Dark Higgs model

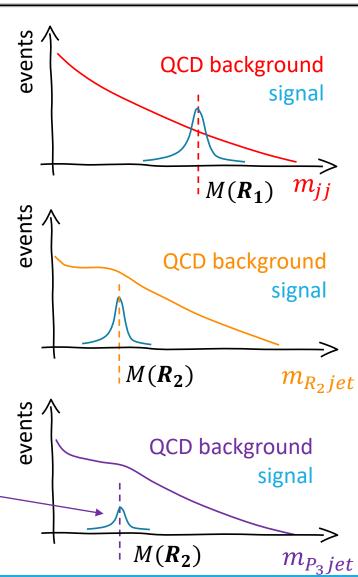
- \succ Model with 3 particles of unknown mass: $m_{Z'}$, m_s , m_χ
- ightharpoonup Limits in 2D: $m_{\chi}=200~GeV;~m_{Z'}\in[0.5;2.5]~TeV;~m_{S}\in[160;360]~GeV$
- \succ Obs. exclusion narrower than exp. at low m_s due to small excess for $m_{VV}\cong 160~GeV$




Trijet resonances

New unexplored signature at the LHC

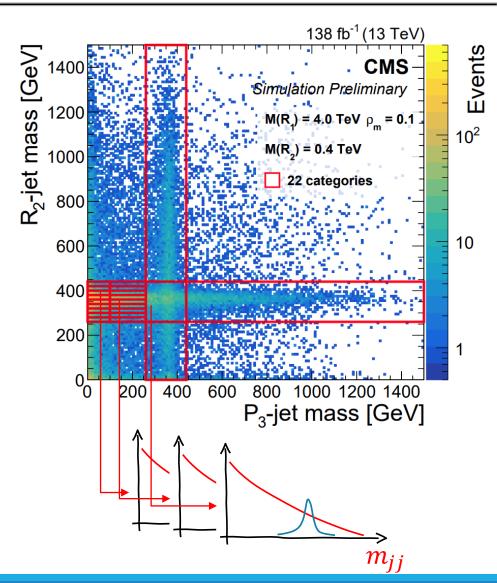

- Cascade decay with 2 new resonances:
 - o P_1 , P_2 , P_3 are q/g producing jets
 - Different hadronic final state topologies
- Noosted regime $\rho_m = \frac{M(R_2)}{M(R_1)} < \sim 0.2$:
 - o P_1 , P_2 jets merged
 - Exploit jet substructure and cascade decay properties



Jet identification and observables

- \succ R_2 -jet:
 - o jet with the smallest N-subjettiness ratio (τ_{21})
- > Expected Signature:
 - \circ 2 peaks in m_{ij} and m_{R_2jet} spectra
- Errors in jet identification (~30% of events):
 - Small peak in m_{P_3jet} spectrum from R_2 -jet identified as P_3 -jet

Event categories definition



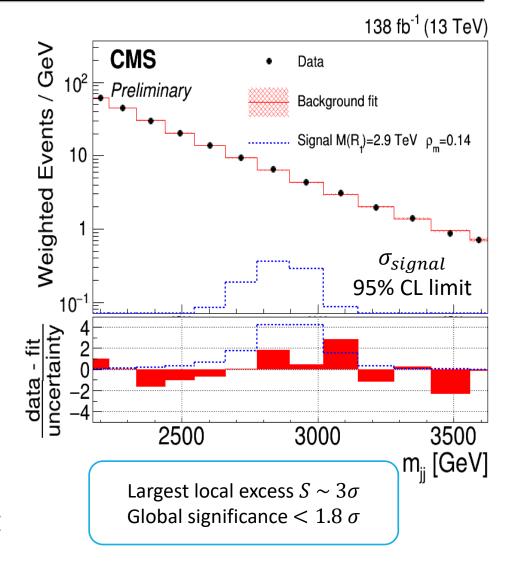
Signal events:

- Cross-shaped area in plane $(m_{R_2jet} \ vs \ m_{P_3jet})$
- \circ Cross centered @ M_{Res2}
- Vertical band: wrong jet ID

> Strategy:

- Divide cross in 2D categories
 - Recover events with misID jets
 - Categories change according to M_{Res2} (sliding window)
- \circ Simultaneous fit to m_{jj} distributions for each category

Combined dijet mass spectrum

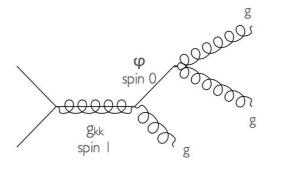

Wide range of signal hypotheses tested:

- o $M(R_1)$ ∈ [2; 9] TeV
- $\rho_m \in [0.1; 0.2]$
- $M(R_2) \in [0.2; 1.8] TeV$
- No evidence for new resonances found
- \triangleright Combined m_{ij} plot (weighted):

$$w_i = \frac{S_i}{S_i + B_i}$$

 $S_i = \# signal \ events \ in \ cat. i$

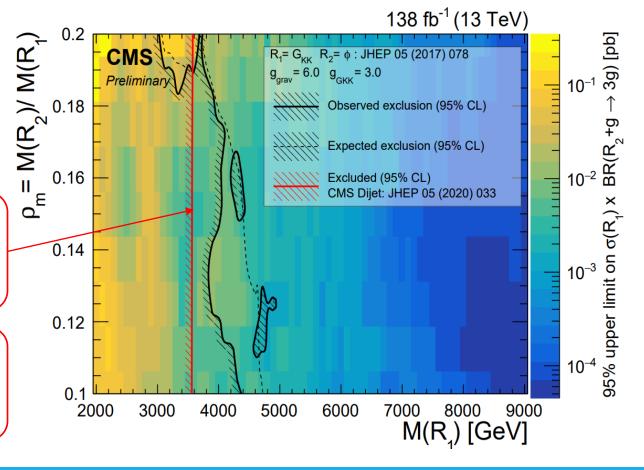
 $B_i = \# background events in cat.i$



Limits on Extra dimension model

Results interpreted in Warped Extra Dimension model (Agashe et al. JHEP 05 (2017) 078)

$$q \overline{q}
ightarrow g_{KK}
ightarrow \phi g
ightarrow 3g \ (g_{KK} = ext{Kaluza-Klein gluon}; \ \phi = ext{radion})$$

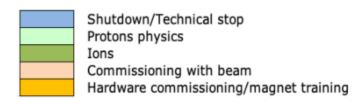


CMS Dijet search constraints

JHEP 05 (2020) 033

$$qq \rightarrow g_{KK} \rightarrow qq$$

Significant increase in sensitivity to this model of new physics


Future prospects

The LHC Run 3 will start in 2022:

- Expect similar integrated luminosity as Run2
 - Mild improvement expected from the increment of data sample size

- o Possible increse of center-of-mass energy $\sqrt{s} = 13 \rightarrow 14 \ TeV$
 - o impact on sensitivity only for very high resonance masses ($> 6 7 \, TeV$)

The collection of new data should proceed in parallel with analysis improvements