

Recent hints of lepton flavor universality (LFU) violation:

Neutral current anomalies (μ vs. e): R_K, R_{K*}

Charged current anomalies (τ vs. μ /e): R_D, R_{D*}, R_{1// ψ}

Typical b \rightarrow stt rate in SM: 10⁻⁷, current limit ~ 10⁻²

Many new physics scenarios plausible: (leptoquarks, new bosons, SUSY...)

- Models resolving the FCCC b \rightarrow ctv anomaly introduce O(0.1) correction to SM coupling at tree level.
- Enhancing $b \rightarrow s\tau\tau$ rates by ~3 orders: more than a smoking gun!
- Still compatible with stringent FCNC b \rightarrow svv limits (O(10⁻⁵))

LFU Tests at the Z Pole Simulation & Analysis Measurement of bstt and beyond

Hong Kong U. of Sci. and Tech.

Lingfeng Li

The $3\pi\nu$ decay of τ provides information of each decay vertex, given the high boost and tracking precision at the Z pole..

- 6 kinetic constraints + 2 mass-shell conditions,
- Fully reconstruct m_B

 $\pi^{\mp}(K)$

 $K^{*0}(\phi)$

In SM, large backgrounds from D mesons faking τ : $3\pi + X$ decays of D mesons is common!

Conservative bkgs estimation using data.

		Properties	Decay Mode	BR
	$ au^{\pm}$	m = 1.777 GeV	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\nu$	9.3%
		$L = 87.0 \mu \mathrm{m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}\nu$	4.6%
1			$\tau^{\pm}\nu$	5.5%
D_s^{\pm}		m = 1.968 GeV $L = 151 \mu \text{m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}$	1.1%
			$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}$	0.6%
			$\pi^{\pm}\pi^{\pm}\pi^{\mp}2\pi^{0}$	4.6%
			$\pi^{\pm}\pi^{\pm}\pi^{\mp}K^0_S$	0.3%
			$\pi^{\pm}\pi^{\pm}\pi^{\mp}\phi$	1.2%
	D±	$m = 1.870 \text{GeV}$ $L = 311 \mu \text{m}$	$\tau^{\pm}\nu$	< 0.12%
			$\pi^{\pm}\pi^{\pm}\pi^{\mp}$	0.31%
			$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}$	1.1%
			$\pi^{\pm}\pi^{\pm}\pi^{\mp}K^0_S$	3.0%
Type		Channel	Color $s\bar{s}$	au BR
		$B^0 \to K^{*0} D^{(*)+} D^{(*)-}$		$1.2 imes 10^{-2}$
$b \to c \bar{c} s$		$B_s \to K^{*0} D^{(*)+} D_s^{(*)-}$		$1.2 imes 10^{-2}$
		$B_s \to \bar{K}^{*0} D_s^{(*)+} D^{(*)-}$		$1.2 imes 10^{-2}$
		$B^0 \to K^{*0} D_s^{(*)+} D_s^{(*)-}$	\checkmark	$1.6 imes 10^{-3}$
$b \to c \tau \nu$		$B^0 \to K^{*0} D_s^{(*)-} \tau^+ \nu$	<u>ا</u>	\checkmark 3.0 \times 10 ⁻⁵
		$B_s \to \bar{K}^{*0} D^{(*)-} \tau^+ \nu$		\checkmark 4.6 × 10 ⁻⁴

Future Prospects

Projection of $B_s \rightarrow \phi vv \text{ process}$, using full simulation data from the CEPC group.

- Differential measurements included
- S/B > 1 to avoid large systematics.
- Motivation for detector R&D

References

signal-hemisphere

tag-hemisphere

Lingfeng Li and Tao Liu, [arXiv:2012.00665].

J. F. Kamenik, S. Monteil, A. Semkiv, and L. V. Silva Eur. Phys. J. C77 (2017), no. 10 701, [arXiv:1705.11106].

B. Capdevila, A. Crivellin, S. Descotes-Genon, L. Hofer, and J. Matias, Phys. Rev. Lett. 120 (2018), no. 18 181802, [arXiv:1712.01919].

CEPC Study Group Collaboration, M. Dong et al., [arXiv:1811.10545].

D. d'Enterria, in Proceedings, 17th Lomonosov Conference o Elementary Particle Physics: Moscow, Russia, August 20-26, 2015, pp. 182-191, 2017, [arXiv:1602.05043].