LFU Tests at the Z Pole

Introduction

Many new physics scenarios plausible: (leptoquarks, new bosons, SUSY…)

- Models resolving the FCCC $b \to c\tau\nu$ anomaly introduce $O(0.1)$ correction to SM coupling at tree level.
- Enhancing $b \to s\tau\tau$ rates by ~3 orders: more than a smoking gun!
- Still compatible with stringent FCNC $b \to s\nu\nu$ limits ($O(10^{-5})$)

Recent hints of lepton flavor universality (LFU) violation:

- Charged current anomalies (τ vs. μ/e): R_D, R_{D^*}, $R_{J/\Psi}$.
- Neutral current anomalies (μ vs. e): R_K, R_{K^*}.
- Typical $b \to s\tau\tau$ rate in SM: 10^{-7}, current limit ~ 10^{-2}

Scale

<table>
<thead>
<tr>
<th>Channel</th>
<th>Belle II</th>
<th>LHCb</th>
<th>Giga-Z</th>
<th>Tera-Z</th>
<th>$10\times$ Tera-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^0, \bar{B}^0</td>
<td>5.3×10^{10}</td>
<td>6×10^{13}</td>
<td>1.2×10^{8}</td>
<td>1.2×10^{11}</td>
<td>1.2×10^{12}</td>
</tr>
<tr>
<td>B^\pm</td>
<td>5.6×10^{10}</td>
<td>6×10^{13}</td>
<td>1.2×10^{8}</td>
<td>1.2×10^{11}</td>
<td>1.2×10^{12}</td>
</tr>
<tr>
<td>B_s, \bar{B}_s</td>
<td>5.7×10^{8}</td>
<td>2×10^{13}</td>
<td>3.2×10^{7}</td>
<td>3.2×10^{10}</td>
<td>3.2×10^{11}</td>
</tr>
<tr>
<td>B_c^\pm</td>
<td>$-\quad$</td>
<td>4×10^{11}</td>
<td>2.2×10^{5}</td>
<td>2.2×10^{8}</td>
<td>2.2×10^{9}</td>
</tr>
<tr>
<td>$\Lambda_b, \bar{\Lambda}_b$</td>
<td>$-\quad$</td>
<td>2×10^{13}</td>
<td>1.0×10^{7}</td>
<td>1.0×10^{10}</td>
<td>1.0×10^{11}</td>
</tr>
</tbody>
</table>
The $3\pi\nu$ decay of τ provides information of each decay vertex, given the high boost and tracking precision at the Z pole.

- 6 kinetic constraints + 2 mass-shell conditions,
- Fully reconstruct m_B

In SM, large backgrounds from D mesons faking τ: 3π+X decays of D mesons is common!

- Conservative bkgs estimation using data.

Energy within the $\Delta R<0.2$ around candidate tracks.

Quiet ee collider + boosted tracks: Large D meson veto.

The 3π invariant mass structure
Measurement of $b \tau \tau$ and beyond

Lingfeng Li
Hong Kong U. of Sci. and Tech.

LFU Tests at the Z Pole
Results & Interpretation

Up: Mass peak of $B^0 \rightarrow K^* \tau \tau$
Down: Mass peak of $B_s \rightarrow \tau \tau$
Final S/B ratio $\sim 1 \text{-} 10\%$

At Tera-Z, able to see $O(1)$ deviations from the SM.

UNIQUE chance at the Z pole!

$$O^\tau_{9(10)} = \frac{\alpha}{4\pi} \left[\bar{s} \gamma^\mu P_L b \right] \left[\bar{\tau} \gamma^\mu (\gamma^5) \tau \right]$$

$$O^\tau_{9(10)} = \frac{\alpha}{4\pi} \left[\bar{s} \gamma^\mu P_R b \right] \left[\bar{\tau} \gamma^\mu (\gamma^5) \tau \right]$$

Limit of EFT Wilson coefficients $O(10^3)$ (current) $\rightarrow O(10)$.

Expecting differential measurements/more channels to improve.
LFU Tests at the Z Pole
Measurement of $b\tau\tau$ and beyond
Lingfeng Li
Hong Kong U. of Sci. and Tech.

Multiple searches using FCCC $b \rightarrow c\tau\nu$ decays are in preparation
• $R_{J/\psi}$, R_{D_s}, $R_{D_{s*}}$, and R_{Λ_c}
• Good reconstruction quality ensuring $S/B \sim 1$.

Kinematic difference between muonic and tauonic modes.

Projection of $B_s \rightarrow \phi \nu \nu$ process, using full simulation data from the CEPC group.
• Differential measurements included
• $S/B > 1$ to avoid large systematics.
• Motivation for detector R&D

References
Lingfeng Li and Tao Liu, [arXiv:2012.00665].
CEPC Study Group Collaboration, M. Dong et al., [arXiv:1811.10545].