Andrew Lifson, Lund University/UC Louvain, LHCP 2021 poster

In collaboration with Joakim Alnefjord, Christian Reuschle, and Malin Sjödahl

Aim of Chirality Flow

Explore if spinor-helicity $\simeq su(2) \oplus su(2)$ calculations can be done analogously to colour flow $\equiv su(3)$

Ex: Calculate $ee \rightarrow \gamma \gamma$ in One Line

In both examples:

Feynman diagram in black
Coloured flow lines \equiv coloured inner products
Inner products \equiv well known complex numbers

Key Conclusion of Chirality Flow

You can (often) go from Feynman diagram to complex number in one line

Ex: 10-pt Feynman Diagram in One Line

To find out details see next few slides

Andrew Lifson, Lund University/UC Louvain, LHCP 2021 poster

In collaboration with Joakim Alnefjord, Christian Reuschle, and Malin Sjödahl

Representations of Lorentz Group

• Lorentz group generators $\simeq 2$ copies of su(2) generators, i.e. $so(3,1)_{\mathbb C} \cong su(2) \oplus su(2)$

For rest of poster:

- Blue $su(2) \equiv left chiral$
- Red $su(2) \equiv \text{right chiral}$

Lorentz Reps expressed using $su(2) \oplus su(2)$:

- \bullet (0,0) scalar
- $(\frac{1}{2}, 0)$ left-chiral and $(0, \frac{1}{2})$ right-chiral Weyl (2-component) rep
- $(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})$, Dirac (4-component) rep
- $\left(\frac{1}{2}, \frac{1}{2}\right)$ vector rep

Keys to Spinor-Helicity Formalism

Write all objects in terms of left- and right-chiral Weyl spinors, and Pauli matrices

Amplitude is a number, easy to square

The Spinor-Helicity Method

Massless spinors either left and right chiral (use chiral basis, $\gamma^5 = \text{diag}(-1,1)$):

$$u^{+}(p) = v^{-}(p) = \begin{pmatrix} 0 \\ |p\rangle \end{pmatrix} \qquad u^{-}(p) = v^{+}(p) = \begin{pmatrix} |p| \\ 0 \end{pmatrix}$$
$$\bar{u}^{+}(p) = \bar{v}^{-}(p) = \begin{pmatrix} |p| \\ 0 \end{pmatrix} \qquad \bar{u}^{-}(p) = \bar{v}^{+}(p) = \begin{pmatrix} 0 \\ \langle p| \end{pmatrix}$$

Vectors $(r \equiv \text{arbitrary ref spinor}, \tau^{\mu} = \sigma^{\mu}/\sqrt{2})$:

$$\epsilon_{+}^{\mu}(p,r) = \frac{\langle r|\bar{\tau}^{\mu}|p]}{\langle rp\rangle}, \qquad \epsilon_{-}^{\mu}(p,r) = \frac{[r|\tau^{\mu}|p\rangle}{[pr]}$$

$$\sqrt{2}p^{\mu}\tau_{\mu} \equiv \not\!p = |p]\langle p|, \qquad \sqrt{2}p^{\mu}\bar{\tau}_{\mu} \equiv \bar{\not\!p} = |p\rangle[p]$$

Algebraic maniputions to remove vector indices

Amplitude ≡ function of Lorentz-invariant spinor inner products (numbers)

Andrew Lifson, Lund University/UC Louvain, LHCP 2021 poster

In collaboration with Joakim Alnefjord, Christian Reuschle, and Malin Sjödahl

Simplify using Chirality Flow

Left-chiral spinors = dotted lines

Right-chiral spinors = solid lines

Inner products defined as:

$$\langle i|^{\alpha}|j\rangle_{\alpha} \equiv \langle ij\rangle = -\langle ji\rangle = i \longrightarrow j$$

$$[i|_{\dot{\beta}}|j]^{\dot{\beta}} \equiv [ij] = -[ji] = i \longrightarrow j$$

Vectors replaced by double lines

Momenta represented by momentum dot

$$(p = \Sigma_i p_i, \ p_i^2 = 0)$$

$$\sqrt{2}p^{\mu}\bar{\tau}_{\mu} = \sum_{i} |i\rangle[i| = \underbrace{\Sigma_i p_i}_{\Sigma_i p_i},$$

$$\sqrt{2}p^{\mu}\tau_{\mu} = \sum_{i} |i\rangle\langle i| = \underbrace{\Sigma_i p_i}_{\Sigma_i p_i}$$

Important Takeaway

You can use these replacements to create new set of Feynman rules

(Massless) QED Chirality-Flow Rules

Andrew Lifson, Lund University/UC Louvain, LHCP 2021 poster

In collaboration with Joakim Alnefjord, Christian Reuschle, and Malin Sjödahl

Application of Chirality Flow Rules

- Draw and connect flow lines without arrows
- Choose single arrow direction and follow it through diagram (vector double lines have arrows opposing)
- Read off inner products

Massive Chirality Flow + Example

- Massive particles \equiv combinations of massless ones \Rightarrow recycle massless chirality flow
- E.g. $p^{\mu}=p^{\flat,\mu}+\alpha q^{\mu}$, $(p^{\flat})^2=q^2=0, p^2=m^2$

Note:

- W boson simplifies
- ullet Simplify with choices of q_1,\cdots,q_5
- $e^{i\varphi_i}\sqrt{\alpha_i}=\frac{m_i}{\langle n^{\flat}\alpha_i\rangle}, \quad e^{-i\varphi_i}\sqrt{\alpha_i}=\frac{m_i}{[\alpha_in^{\flat}]}$
- Scalar has no flow line

Conclusions

- Chirality flow offers the shortest possible journey from Feynman diagram to complex number
- Calculations often performed in a single step, without algebraic manipulations
- Full standard model at tree level understood

How to Find Out More Details?

- See hep-ph:2003.05877 (EPJC) and hep-ph:2011.10075 (EPJC)
- Listen to video recording of poster
- Join me in Zoom to discuss and ask questions
- Contact me at andrew.lifson@thep.lu.se

