CP-violating observables and top-pair production at LHC

Apurba Tiwari¹ and Sudhir Kumar Gupta²

¹atiwari@myamu.ac.in, ²sudhir.ph@amu.ac.in

Aligarh Muslim University, Aligarh-202001, UP, India

Abstract

We study new physics contributions to CP-violating anomalous couplings of top-quark in the context of top-pair production and their consequent decays into a pair of dilepton and b-jets at the Large Hadron Collider. An estimate of sensitivities to such CP-violating interactions would also be discussed for the pre-existing 13 TeV LHC data and its projections for the proposed LHC run at 14 TeV.

Introduction

- The matter-antimatter asymmetry of the universe is one of the greatest mysteries of modern physics.
- Observation of CP-violation [1] will help to understand the matter-antimatter asymmetry of the universe.
- The Standard-Model [2] is a very rich and successful phenomenology and allows a tiny amount of CP-violation which is not sufficient to explain the matter-antimatter asymmetry of the universe. This indicates the need to explore beyond SM theories.
- Direct CP-violation could be observed through the top induced processes which are abundant at the LHC.
- •In this study, we consider top-pair production through the process $pp \to t\bar{t}$, where the top and anti-top-quark further decays semileptonically into $(bl^+\nu_l)$ and $(\bar{b}l^-\bar{\nu}_l)$.
- •We study the CP-violating effects in the top-pair production by constructing the T-odd observables.
- The CP-violating asymmetry is constructed using the formula

$$\mathcal{A}_{CP} = \frac{N(\mathcal{C}_i > 0) - N(\mathcal{C}_i < 0)}{N(\mathcal{C}_i > 0) + N(\mathcal{C}_i < 0)}, \tag{1}$$

• A non-zero value of asymmetry would be a clear indication of the presence of CP-violation.

Lagrangain and Process

• The following anomalous interaction term modifies the SM Lagrangian in the presence of T-odd interactions of top-quark with gluon

$$\mathcal{L}_{\text{int}} = -i\frac{g_s}{2} \left(\frac{d_g}{\Lambda}\right) \bar{t} \sigma_{\mu\nu} \gamma_5 G^{\mu\nu} t, \qquad (2)$$

• The figure represents Feynman diagrams responsible for top-quark pair production at the LHC.

Observables

We consider the following T-odd correlations:

$$C_{1} = \epsilon(p_{b}, p_{\bar{b}}, p_{l^{+}}, p_{l^{-}})$$

$$C_{2} = \tilde{q} \cdot (p_{l^{+}} - p_{l^{-}}) \epsilon(p_{l^{+}}, p_{l^{-}}, p_{b} + p_{\bar{b}}, \tilde{q})$$

$$C_{3} = \tilde{q} \cdot (p_{l^{+}} - p_{l^{-}}) \epsilon(p_{b}, p_{\bar{b}}, p_{l^{+}} + p_{l^{-}}, \tilde{q})$$

$$C_{4} = \epsilon(P, p_{b} - p_{\bar{b}}, p_{l^{+}}, p_{l^{-}})$$

$$C_{5} = \epsilon(p_{b} + p_{l^{+}}, p_{\bar{b}} + p_{l^{-}}, p_{b} + p_{\bar{b}}, p_{l^{+}} - p_{l^{-}}),$$
(3)

CP-violating observables and top-pair production at LHC

Apurba Tiwari¹ and Sudhir Kumar Gupta²

¹atiwari@myamu.ac.in, ²sudhir.ph@amu.ac.in

Aligarh Muslim University, Aligarh-202001, UP, India

Results

The Figures show possible $d_g - \Lambda$ space allowed at 2.5 σ and 5 σ respectively for the given C.M. energy and Luminosities.

13 TeV LHC Energy

HL-LHC (14 TeV LHC energy)

Conclusions

- The present study acheived stringent bounds on CP-violating anomalous couplings of the top-quark.
- •We have presented 5σ sensitivities for 13 TeV C.M. energy at LHC with the integrated luminosities of $36.1~{\rm fb^{-1}}$, $140~{\rm fb^{-1}}$ and predicted that we can achieve 5σ sensitivity at 14 TeV LHC energy with projected luminosities of $0.3~{\rm ab^{-1}}$, $1~{\rm ab^{-1}}$, $2~{\rm ab^{-1}}$ and $3~{\rm ab^{-1}}$. The results are summarised in the following table.

√S (TeV)	$\int \mathcal{L} dt$	$\left \frac{d_{g}}{\Lambda}\right $ (in GeV ⁻¹)	
		at 3σ C.L.	at 5σ C.L.
13	36.1 fb^{-1}	0.29×10^{-4}	0.6×10^{-4}
	140 fb ⁻¹	0.52×10^{-5}	0.2×10^{-4}
14 (HL-LHC)	0.3 ab^{-1}	0.39×10^{-5}	0.6×10^{-5}
	1.0 ab^{-1}	0.11×10^{-4}	0.5×10^{-5}
	2.0 ab^{-1}	0.13×10^{-4}	0.9×10^{-5}
	3.0 ab^{-1}	0.14×10^{-4}	0.1×10^{-4}

Table: Sensitivity to CP-violating anomalous couplings at 3σ C.L. and 5σ C.L. in the process $pp \to t\bar{t} \to (bl^+\nu_l)(\bar{b}l^-\bar{\nu}_l)$ at \sqrt{S} of 0.3 ab⁻¹, 1 ab⁻¹, 2 ab⁻¹ and 3 ab⁻¹.

References

- J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, Phys. Rev. Lett. 13, 138-140 (1964) doi:10.1103/PhysRevLett.13.138
- J. D. Wells, [arXiv:1911.04604 [physics.hist-ph]].