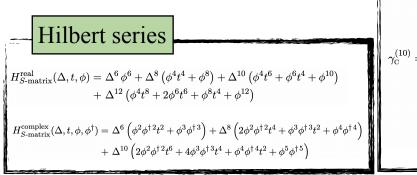

LHCP 2021

Renormalization of scalar EFTs at higher orders (arXiv:2105.12742)

Weiguang Cao (weiguang.cao@ipmu.jp), Franz Herzog, Tom Melia, Jasper Roosmale Nepveu



$$\begin{split} & \textbf{Real} \\ \gamma_{c}^{(6)} = 9g - \frac{359g^{2}}{6} + \left(216\zeta_{3} + \frac{5773}{12}\right)g^{3} - \left(\frac{5283\zeta_{3}}{2} - 459\zeta_{4} + 3960\zeta_{5} + \frac{1312907}{288}\right)g^{4} \\ & + \left(1755\zeta_{3}^{2} + \frac{510193}{16}\zeta_{3} - \frac{25483}{4}\zeta_{4} + 54621\zeta_{5} - \frac{29025}{2}\zeta_{6} + 73584\zeta_{7} + \frac{333811365}{6912}\right)g^{5} \\ & g^{3} \mathcal{O}_{8}^{(8)c} \qquad g \mathcal{O}_{4}^{(8)c} \\ \gamma_{c}^{(8)} = \left(\frac{19g - 169g^{2} + \left(636\zeta_{3} + \frac{46255}{24}\right)g^{3}}{0g + 0g^{2} + 0g^{3}} \frac{2352g - \frac{76720g^{2}}{3} + \left(65856\zeta_{3} + \frac{8676248}{27}\right)g^{3}}{g + \frac{49g^{2}}{27} - \left(\frac{12017}{1944} + \frac{20\zeta_{3}}{3}\right)g^{3}}\right) \\ \gamma_{c}^{(10)} = \left(\frac{g^{4} \mathcal{O}_{10}^{(10)c} g^{2} \mathcal{O}_{6}^{(10)c} g\mathcal{O}_{4}^{(10)c}}{0g + 0g + 0g^{2}}\right)\gamma_{c}^{(12)} = \left(\begin{array}{c}g^{5} \mathcal{O}_{12}^{(12)c} g^{3} \mathcal{O}_{8}^{(12)c} g^{2} \mathcal{O}_{6}^{(12)c}(1,0) g^{2} \mathcal{O}_{6}^{(12)c}(0,1) g \mathcal{O}_{4}^{(12)}}{1944} + \frac{20\zeta_{3}}{3}\right)g^{3} \\ \eta_{c}^{(10)} = \left(\begin{array}{c}g^{4} \mathcal{O}_{10}^{(10)c} g^{2} \mathcal{O}_{6}^{(10)c} g\mathcal{O}_{4}^{(10)c}}{0g + 0g^{2} + 0g^{3}} g^{2} \mathcal{O}_{6}^{(12)c} g^{3} \mathcal{O}_{8}^{(12)c} g^{2} \mathcal{O}_{6}^{(12)c}(1,0) g^{2} \mathcal{O}_{6}^{(12)c}(0,1) g \mathcal{O}_{4}^{(12)}}{1944} + \frac{20\zeta_{3}}{3} g^{2} \mathcal{O}_{4}^{(12)c} g^{2} \mathcal{O}_{6}^{(12)c} g^{2} \mathcal{O}_{6}^{(12)c} g^{2} \mathcal{O}_{6}^{(12)c}(0,1) g \mathcal{O}_{4}^{(12)}}{1944} + \frac{20\zeta_{3}}{3} g^{2} \mathcal{O}_{4}^{(12)c} g^{2} \mathcal{O}_{6}^{(12)c} \mathcal{O}_{6}^{2} \mathcal{O}_{6}^{(12)c} \mathcal{O}_{6}^{2} \mathcal{O}$$

= C	omplex					
	Shiplex	$g^2 \mathcal{O}_6^{(6)c}$		$g \mathcal{O}_4^{(6)c}$		
$\gamma_{ m C}^{(6)} =$	$\begin{pmatrix} 14g - \frac{297g^2}{2} \\ -\left(\frac{32087\zeta_3}{2} - 2892\right) \end{pmatrix}$	$+\left(816\zeta_{3}+\frac{14981}{8}\right)g^{2}$ $2\zeta_{4}+23320\zeta_{5}+\frac{8889}{32}$				
70	0g+	$0g^2 + 0g^3 + rac{5g^4}{6}$	$\leftg + rac{13g^2}{2} - \left(36\zeta_3 + rac{383}{12} ight) g^3 ight. \ \left. + \left(rac{769\zeta_3}{2} - 123\zeta_4 + 560\zeta_5 + rac{7893}{32} ight) g^4 ight)$			
	$g^3 \mathcal{O}_8^{(8)c}$	$g^2 {\cal O}_6^{(8)c}$	$g \mathcal{O}_4^{(8)c}$ (1,0)	$g {\cal O}_4^{(8)c}$ (0,1)		
	$\left(rac{29g-409g^2}{+\left(2352\zeta_3+rac{57765}{8} ight)g^3} ight)$	$0g-240g^2 + \Bigl(2304\zeta_3+5882\Bigr)g^3$	$\begin{array}{r} \frac{54216g}{5}-\frac{958314g^2}{5}\\ +\Big(\frac{4083264\zeta_3}{5}+\frac{55731313}{15}\Big)g^3\end{array}$	$-rac{8856g}{5}+rac{159894g^2}{5}\ -\Big(rac{713664\zeta_3}{5}+rac{9281093}{15}\Big)g^3 ight)$		
$\gamma_{ m c}^{(8)} =$	$0g + 0g^2 + 0g^3$	$\begin{array}{c} 4g - \frac{122g^2}{3} \\ + \Bigl(216\zeta_3 + \frac{4559}{12}\Bigr)g^3 \end{array}$	$\begin{array}{r} -\frac{679g}{5}+\frac{14209g^2}{12}\\ -\Big(\frac{29216\zeta_3}{5}+\frac{3248605}{324}\Big)g^3\end{array}$	$\begin{array}{r} \frac{164g}{5}-\frac{9233g^2}{36}\\ + \Big(\frac{6056\zeta_3}{5}+\frac{2740291}{1296}\Big)g^3\end{array}$		
7 _c –	$0g + 0g^2 + 0g^3$	$0g + 0g^2 + rac{5g^3}{108}$	$rac{11g}{3} - rac{29g^2}{180} \ - \Big(rac{32\zeta_3}{3} + rac{97091}{9720} \Big) g^3$	$-rac{4g}{3}+rac{1057g^2}{540} \ -\Big(rac{16\zeta_3}{3}+rac{10868}{1215}\Big)g^3$		
	$0g+0g^2+0g^3$	$0g + 0g^2 + rac{115g^3}{324}$	$rac{46g}{3}-rac{14557g^2}{540}\+\Bigl(96\zeta_3+rac{198001}{2430}\Bigr)g^3$	$\left. \begin{array}{c} -\frac{19g}{3}+\frac{2809g^2}{180} \\ -\Big(\frac{176\zeta_3}{3}+\frac{718739}{9720}\Big)g^3 \end{array} \right)$		

<u>Results</u>: ADM and Hilbert series for physical basis in both real and complex scalar EFTs

	$g^4 \mathcal{O}_{10}^{(10)c}$	$g^3 \mathcal{O}_8^{(10)c}$	$g^2 \mathcal{O}_6^{(10)c}$ (1,0,0,0)	$g^2 \mathcal{O}_6^{(10)c}$ (0,1,0,0)	$g^2 \mathcal{O}_6^{(10)c}_{(0,0,1,0)}$	$g^2 \mathcal{O}_6^{(10)c}_{(0,0,0,i)}$	$g \mathcal{O}_4^{(10)c}$ (1,0)	$g\mathcal{O}_4^{(10)c}{}_{(0,1)}$
) =	$\left(50g - rac{1725g^2}{2} ight)$	$0g - 1125g^2$	$\frac{412500g}{7} - \frac{61613665g^2}{42}$	$rac{3300g}{7} - rac{19655g^2}{6}$	$rac{141900g}{7} - rac{6734025g^2}{14}$	0 -	$-\frac{500460g}{7}+\frac{31376515g^2}{21}$	$-64740g + rac{16819700g^2}{21}$
	$0g{+}0g^{2}$	$15g - rac{385g^2}{2}$	$-rac{1474g}{7}+rac{83689g^2}{45}$	$-rac{234g}{7}+rac{386467g^2}{315}$	$\frac{326g}{7} - \frac{4577g^2}{7}$	0	$-\frac{43732g}{35}+\frac{5863532g^2}{315}$	$\frac{14272g}{5} - \frac{15354406g^2}{315}$
	$0g + 0g^2$	$0g{+}0g^2$	$rac{35g}{6} - rac{678389g^2}{15120}$	$-rac{g}{6}+rac{24379g^2}{15120}$	$\frac{7g}{6} - \frac{28265g^2}{3024}$	0	$\frac{1006g}{105} + \frac{1249571g^2}{15120}$	$-\frac{967g}{30} + \frac{1903001g^2}{3780}$
	$0g + 0g^2$	$0g + 0g^{2}$	$rac{4g}{3} - rac{331g^2}{630}$	$-rac{2g}{3}-rac{5401g^2}{945}$	$2g - rac{14965g^2}{756}$	0	$-rac{4159g}{105}+rac{3146033g^2}{7560}$	$\frac{914g}{15} - \frac{103037g^2}{315}$
	$0g + 0g^2$	$0g + 0g^{2}$	$rac{15g}{2} - rac{247109g^2}{5040}$	$-rac{g}{2}-rac{4127g^2}{1680}$	$\frac{7g}{2} - \frac{31333g^2}{1008}$	0	$-\tfrac{1769g}{35} + \tfrac{243011g^2}{336}$	$\frac{573g}{10} + \frac{37049g^2}{1260}$
	0	0	0	0	0	$\frac{10g}{3} - \frac{770g^2}{27}$	0	0
	$0g + 0g^2$	$0g+0g^2$	$0g{+}0g^2$	$0g{+}0g^2$	$0g+0g^2$	0	$-2g+rac{223g^2}{24}$	$-g+rac{7g^2}{24}$
	$0g + 0g^2$	$0g+0g^2$	$0g{+}0g^2$	$0g+0g^2$	$0g+0g^2$	0	$-g+rac{7g^2}{12}$	$-3g+rac{251g^2}{24}$
	•							