




# THE TOP-QUARK ELECTRO-WEAK COUPLINGS AFTER LHC RUN2

M. Miralles<sup>1</sup>, V. Miralles<sup>1</sup>, M. Moreno Llácer<sup>1</sup>, A. Peñuelas<sup>1,2</sup>, M. Perelló<sup>1</sup> and M. Vos<sup>1</sup>

<sup>1</sup> IFIC (Universitat de València and CSIC), <sup>2</sup>U.Mainz, Prisma



Global fit of the top electro-weak (EW) couplings to current available data

For the **very first time** we include

- ightharpoonup Differential measurements for  $pp o t \overline{t} Z$  and  $pp o t \overline{t} \gamma$
- ☆ QCD predictions at NLO

Including latest LHC data we are able to significantly improve over previous fits

### How do we do all this



We adopt an **EFT description** to parametrise the deviations from the SM

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_{i} C_i O_i + \mathcal{O}(\Lambda^{-4})$$

We show results for **8 D6 operators** in the **Warsaw Basis** 

times Left/Right couplings of top/bottom to Z:  $m{o}_{m{arphi}t}$ ,  $m{o}_{m{arphi}m{Q}}^{-}$ ,  $m{o}_{m{arphi}m{Q}}^{(3)}$ 

ightharpoonup EW dipole operators:  $\boldsymbol{O}_{tZ}$ ,  $\boldsymbol{O}_{tW}$ ,  $\boldsymbol{O}_{bW}$ 

\*[1][2][3][4]

 $\bigstar$  Top Yukawa:  $oldsymbol{O}_{oldsymbol{t}oldsymbol{\phi}}$ 

 $\Leftrightarrow$  Charged current interaction:  $O_{\varphi tb}$ 

Dependence studied with

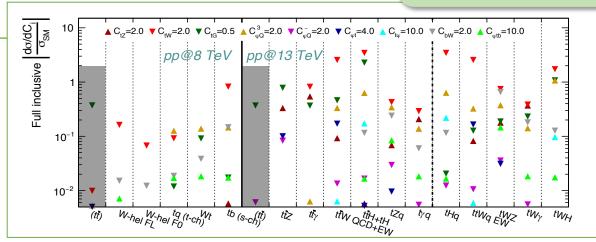
MG5\_aMC@NLO<sup>[5]</sup>



UFO models:

SMEFTatNLO for all except  $O_{bW}$ ,  $O_{\varphi tb}$  with TEFT\_EW

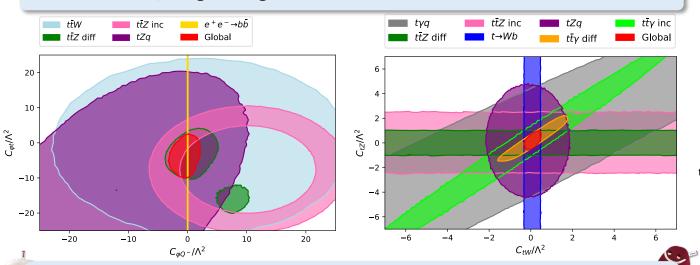
|                                   |                         |               |                         | [-][-][-][.] |
|-----------------------------------|-------------------------|---------------|-------------------------|--------------|
| Process                           | Observable              | $\sqrt{s}$    | $\int \mathscr{L}$      | Experiment   |
| $pp 	o t ar{t} H$ NLO             | cross section           | 13 TeV        | 140 ${ m fb}^{-1}$      | ATLAS        |
| $pp 	o tar{t}W$ NLO               | cross section           | 13 TeV        | $36 \; { m fb}^{-1}$    | CMS          |
| $pp 	o tar{t}Z$ NLO               | (differential) x-sec.   | 13 TeV        | $140 \; { m fb}^{-1}$   | ATLAS        |
| $pp 	o tar{t}\gamma$ NLO          | (differential) x-sec.   | 13 TeV        | $140 \; { m fb}^{-1}$   | ATLAS        |
| pp 	o t Zq NLO                    | cross section           | 13 TeV        | $140 \; { m fb}^{-1}$   | CMS          |
| $pp 	o t \gamma q$ NLO            | cross section           | 13 TeV        | $36 \; { m fb}^{-1}$    | CMS          |
| pp  ightarrow tb (s-ch) NLO       | cross section           | 8 TeV         | $20 \; { m fb}^{-1}$    | ATLAS+CMS    |
| pp 	o tW LO                       | cross section           | 8 TeV         | $20 \; { m fb}^{-1}$    | ATLAS+CMS    |
| pp  ightarrow tq (t-ch) NLO       | cross section           | 8 TeV         | $20 \; { m fb}^{-1}$    | ATLAS+CMS    |
| $t  ightarrow W^+ b$ LO           | $F_0$ , $F_L$           | 8 TeV         | $20 \; { m fb}^{-1}$    | ATLAS+CMS    |
| $par p	o tar b$ (s-ch) $_{	t LO}$ | cross section           | 1.96 TeV      | $9.7 \; { m fb}^{-1}$   | Tevatron     |
| $e^-e^+	o bar b$ to               | $R_b$ , $A_{FBLR}^{bb}$ | $\sim$ 91 GeV | $202.1 \text{ pb}^{-1}$ | LEP          |


Two extra operators  $O_{bZ}$ ,  $O_{\varphi b}$  with **LEP/SLD data** that is still very sensitive

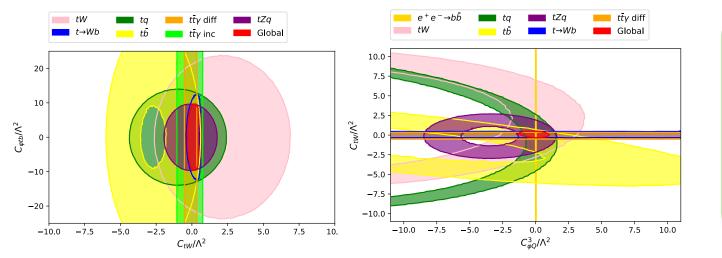


Full picture of **observable sensitivity** to inclusive processes



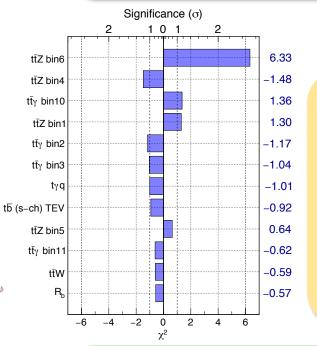

The fit is performed as a **Bayesian statistical analysis** of the model




## Towards a global fit



#### Global fit results, marginalizing over all other Wilson coefficients are shown




- 2D 95% probability contours showing complementarity between different measurements and the power of differential  $t\bar{t}Z$  and  $t\bar{t}\gamma$  ones
- Watch out for: LEP in  $C_{\varphi Q}^-$ ,  $C_{\varphi Q}^{(3)}$ ;  $t \bar{t} Z$  in  $C_{tZ}$ ,  $C_{\varphi t}$ ;  $t \bar{t} \gamma$  and Whel. in  $C_{tW}$ ; t Z q in  $C_{\varphi tb}$



#### The beloved Standard Model





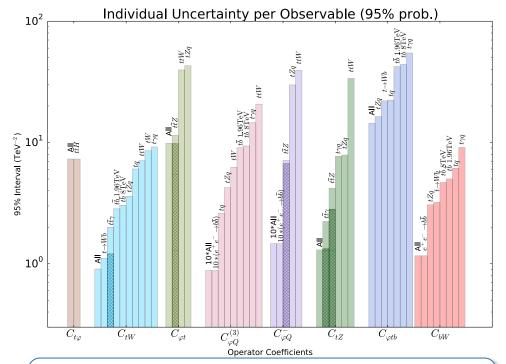
## How well does the SM describe data?

- SM fit, including all the observables (30 bins) offers very good agreement with  $\chi^2 = 20.7$  (p-value  $\sim 0.90$ )
- Largest contributions from a few  $t\bar{t}Z$  and  $t\bar{t}\gamma$  differential  $p_T$  bins

#### **Bounds of a Global EFT fit**

Linear Fit  $(\Lambda^{-2})$  SM – D6 interference

$$\stackrel{\wedge}{\sim} C_{\varphi t}, C_{\varphi Q}^{-}, C_{\varphi Q}^{(3)}, C_{tZ}, C_{tW}, C_{t\varphi}, (C_{\varphi b})$$


Linear + Quadratic Fit  $(\Lambda^{-2} + \Lambda^{-4})$  SM – D6 + D6 – D6 interf.

$$\Leftrightarrow$$
 ...,  $C_{\varphi tb}$ ,  $C_{bW}$ ,  $(C_{bZ})$ 

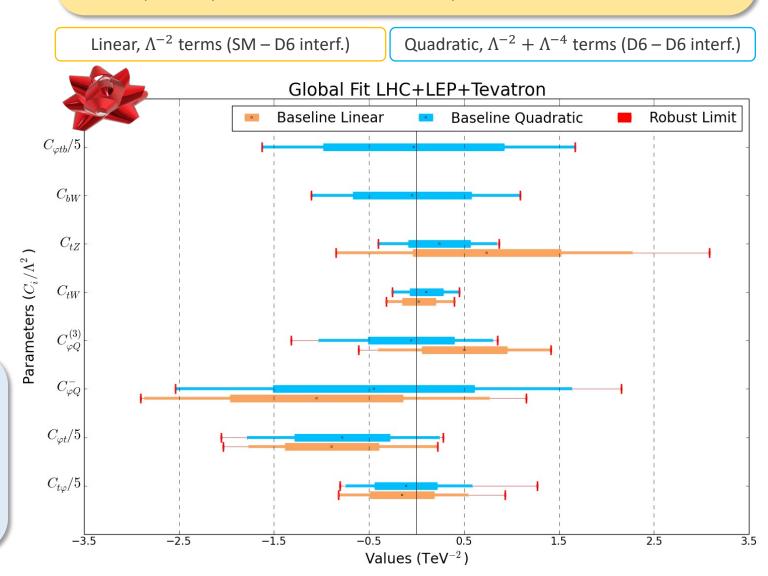
In both fits, published correlations between differential  $p_T$  bins, LEP observables and W helicity fractions have been included

| Fit       | $\chi^2/d.o.f.$ | p-value |
|-----------|-----------------|---------|
| SM        | 20.7/29         | 0.87    |
| EFT Lin.  | 17.2/22         | 0.75    |
| EFT Quad. | 19.2/19         | 0.44    |

# Final Global fit bounds



Differential measurements are indicated as darker bars


#### Robustness of the fit:

- $\stackrel{\star}{\bowtie}$  Effect of two additional 4-fermion op.  $O_{tu}^8$  and  $O_{td}^8$
- ★ MC theory scale uncertainties in EFT parametrisations
- Correlations between different observables (ansatz of non-published correlations has been estimated)

An envelope with the effect of the above on the fit is shown as the Robust Limit

We are able to present a **significant improvement** on all Wilson coefficients

- Arr Differential measurements improve  $C_{tZ}$  limits by a factor 2
- More consistent central values with SM
- LEP data is still very competitive and generates some of best constraints
- $\sim$  Compatibility with 0 within 2 $\sigma$  and 95% prob. bounds  $\pm 0.4$  to  $\pm 8~{\rm TeV}^{-2}$



#### María Moreno Llácer







Víctor Miralles





Martín Perelló

# THANKS FOR THE **ATTENTION!**

