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Based on [2011.10054]‣ MCs are vital tools to bridge between TH and EXP at colliders 

‣ Advances in QFT perturbative calculations (fixed/all orders) hard  
 to port to MC generators

2

Monte Carlo generators at colliders

~ × 5

e.g. ML training

e.g. extrapolation & unfolding N subjett. for W tagging 
(linear vs. DNN)

[ATLAS ’19] see also  
[Jaeger, Karlberg, Plaetzer, Scheller, Zaro ’20]

[Komiske, Metodiev, Thaler ’17]
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I Today parton shower errors can dominate analysis

I Parton showers in experimentalists’ daily
arsenal.

I Traditional parton showers neglect 1/N2
c

effects. Error ∼ αs = next order
contribution.

I Goal: Develop accurate algorithm to
reintroduce colour into showers.
1st step: Final state showers

π

K+

π

ρ

π

p

Z

Parton
shower

hard

process

1/3



The Solution

I We developed two new algorithms based on coherent emissions and compared to existing methods

I Segments: Exact when emissions are
strongly ordered in angle

I Nested ordered double soft scheme NODS:
correct for pairs of energy-ordered
commensurate-angle emissions

Comparing segments to traditional algorithms
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Segments scheme

Wrongly assigns

CF everywhere

Assigns CF /CA

according to

colour coherence

Speed penalty is small (≤ 1µs/emission)
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I Both algorithms reproduce full colour
resummation results up to NLL for large classes
of collider observables
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Results and Conclusions

I Evaluate correctness based on
how well schemes reproduce
known matrix element:
qqg1 → qqg1 + g example
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I Algorithms reproduce NLL
resummation
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LL accuracy tests  CFFE method
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NLL accuracy tests  NODS method
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Accurate shower =

accurate full colour

I LL: Resums terms αn
s L

n+1

I NLL: Resums terms αn
s L

n

I Testing non-global observables:
Radiation into rapidity slice
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ignoring
1/N 2

c

compared to dedicated

calculation [1304.6930]

I NODS/Segment schemes don’t
reproduce full-colour NLL for
non-global logarithms.
Open question: why do they come
so close numerically?
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