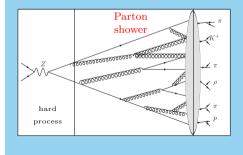
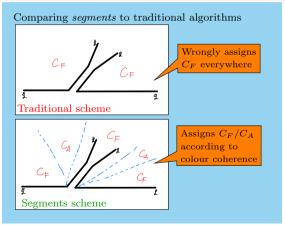
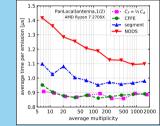

The Problem


Colour and Logarithmic Accuracy in Final-State Parton Showers

K. Hamilton, R. Medves, G. Salam, L. Scyboz, G. Soyez Based on [2011.10054]

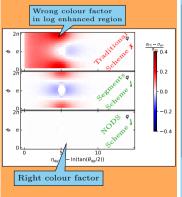
▶ Today parton shower errors can dominate analysis

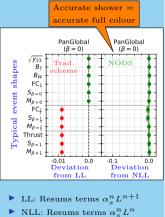

- Parton showers in experimentalists' daily arsenal.
- ► Traditional parton showers neglect $1/N_c^2$ effects. Error $\sim \alpha_s =$ next order contribution.
- Goal: Develop accurate algorithm to reintroduce colour into showers.
 1st step: Final state showers


The Solution

- ▶ We developed two new algorithms based on *coherent emissions* and compared to existing methods
 - Segments: Exact when emissions are strongly ordered in angle

Nested ordered double soft scheme NODS: correct for pairs of energy-ordered commensurate-angle emissions




 Both algorithms reproduce full colour resummation results up to NLL for large classes of collider observables

Results and Conclusions


Evaluate correctness based on how well schemes reproduce known matrix element: $q\overline{q}g_1 \rightarrow q\overline{q}g_1 + g$ example

 Algorithms reproduce NLL resummation

 Testing non-global observables: Radiation into rapidity slice

