Apparent modification of the jet-like yield in high-multiplicity proton-proton collisions

Gyula Bencédi (UNAM/ICN, Mexico)

Antonio Ortiz (UNAM,ICN), Sushanta Tripathy (UNAM,ICN), Antonio Paz (Autonoma de Nuevo Leon U.)

Based on J.Phys.G 48 (2020) 1, 015007 and arXiv 2105.04838 [hep-ph]

Poster Session (Heavy Ions), 10-11.06.2021

Motivation

-> High-multiplicity proton-proton collisions show collective behavior

$$\frac{\mathrm{d}n}{\mathrm{d}\phi} \propto 1 + \sum 2v_n(p_T)\cos[n(\phi - \Psi_n)]$$

-> Good agreement with relativistic viscous hydrodynamic calculations

Figure: Uncorrected acoplanarity distributions for ALICE data (left) and PYTHIA 8 Monash (right), Nucl.Phys.A 1005 (2021) 121924

No jet quenching found so far -> searches warranted: **first measurement from ALICE collaboration**: Search for jet quenching effects in high multiplicity pp collisions at 13 TeV (preliminary)

- Event activity classes based on average multiplicities
- broadening of recoil jet acoplanarity -> characteristic of jet quenching
- similar effect observed in the PYTHIA model (which lacks the mechanism of jet-quenching)

Goal:

Study high-multiplicity pp events in PYTHIA to understand the potential

Methods - Observable and Event activity classifier R_T

Standard two-particle azimuthal correlation analysis to study jet-quenching effects

 I_{AA} : ratio of jet-like yield from AA to the one from pp collisions

- -> interplay between the parton production spectrum and energy loss in the medium
- -> Towards (away) region: enhancement (suppression)

- -> **PYTHIA 8 model:** 2->2 process + parton shower (Initial-and Final state radiation), Color Reconnection, MPI
- -> primary charged particles in $|\eta|$ <0.8, \sqrt{s} = 5.02 TeV
- -> trigger particle: 8 GeV/ $c < p_T < 15$ GeV/c
- -> Study Underlying Event activity (semi-hard and multi-parton interactions)
- -> Use relative transverse activity classifier R_T

$$R_{\mathrm{T}} = rac{N_{\mathrm{ch}}^{\mathrm{trans.}}}{\langle N_{\mathrm{ch}}^{\mathrm{trans.}}
angle}$$

=> Goal: study how event selection based on R_{τ} biases towards and away regions

Methods - jet-like signal $C(\Delta \eta \Delta \phi)$ extraction

- -> correlations at partonic level (due to gluon radiation or colour reconnection) are turned on and off: Initial- and Final state radiation, CR
- -> Monash tune: above given $R_{\rm T}$ value $\langle N_{\rm MPI} \rangle$ saturates -> towards region "picks up" particles from jet fragments -> activity biased

Figure. Average number of multi-parton interactions as a function of $R_{\scriptscriptstyle T}$

- -> selection on $R_{\rm T}$, a third structure in the transverse region ($\pi/3 < |\Delta \phi| < 2\pi/3$): associated yield increases with $R_{\rm T}$
- -> **contribution** to the towards and the away regions has to be **removed**: **using mixed event technique**
- -> Underlying event subtracted using Zero Yield at Minimum method
- -> evolution of jet signal with $R_{\rm T}$ is studied $C(\Delta \eta, \Delta \phi) = B(0, 0) \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$

Results - I.

 $R_{\rm T}$ > 2.5: distributions have peak at $\Delta \phi \sim 2$ rad -> region where NMPI saturates: presence of a third jet -> selection bias

- -> experimentally also observed ArXiv 1910.04457: particle production strong increase with $R_{\scriptscriptstyle T}$
- -> Quantify the effect: calculate the ratio of yields from different R_{T} classes to the R_{T} -integrated one -> I_{pp}

independent of $R_{\rm T}$

Figure. Charged particle yield as a function of $\Delta \varphi$. R_{τ} -integrated distributions are compared to those from different R_{τ} classes. The lower panels are zoomed versions of the upper panels.

Results - II.

-> I_{pp} = 1: in the absence of selection bias
-> Selection bias reduced: integrate the Δφ distribution around the towards/away regions

study observables in the away region

6

Outlook - Disentangling the hard gluon Bremsstrahlung effects

Outlook - Disentangling the hard gluon Bremsstrahlung effects

Barion-to-meson ratios as a function of UE activity

 R_{Tmax} : depletion consistent with the presence of jets in the trans. region

 $R_{\text{T,min}}$: enhancement with increasing $R_{\text{T,min}}$

 \rightarrow expected in events with large avg. N_{MPI}