9th Edition of the Large Hadron Collider Physics Conference

Contribution ID: 494

Type: Theory poster

Apparent modification of the jet-like yield in high multiplicity proton-proton collisions

Thursday 10 June 2021 18:45 (1 hour)

In this work we present the production of charged particles associated with high- $p_{\rm T}$ trigger particles (8 < $p_{\rm T^{trig.}}^{\rm trig.} < 15 \,{\rm GeV}/c$) at midrapidity in proton-proton collisions at $\sqrt{s} = 5.02$, TeV simulated with the PYTHIA 8 Monte Carlo model [1]. The study is performed as a function of the relative transverse activity classifier, $R_{
m T}$, which is the relative charged-particle multiplicity in the transverse region ($\pi/3 < \phi^{
m trig.} - \phi^{
m assoc.}| < 1$ $2\pi/3$) of the di-hadron correlations, and it is sensitive to the Multi-Parton Interactions. The evolution of the yield of associated particles on both the towards and the away regions ($3 \le p_{\rm T}^{\rm assoc.} < 8 \text{ GeV}/c$) as a function of $R_{\rm T}$ is investigated. We propose a strategy which allows for the modelling and subtraction of the Underlying Event (UE) contribution from the towards and the away regions in challenging environments like those characterised by large $R_{\rm T}$. We found that the signal in the away region becomes broader with increasing $R_{\rm T}$. Contrarily, the yield increases with $R_{\rm T}$ in the towards region. This effect is reminiscent of that seen in heavy-ion collisions, where an enhancement of the yield in the towards region for 0-5% central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$, TeV was reported. To further understand the role of the UE and additional jet activity, the transverse region is divided into two one-sided sectors, "trans-max" and "trans-min" selected in each event according to which region has larger or smaller charged particle multiplicity. Based on this selection criterium, the observables are studied as a function of $R_{\rm T}^{\rm max}$ and $R_{\rm T}^{\rm min}$, respectively. Results for pp collisions simulated with PYTHIA 8.244 and Herwing 7.2 will be shown.

[1] J.Phys.G 48 (2020) 1, 015007

Primary authors: BENCEDI, Gyula (Universidad Nacional Autonoma (MX)); ORTIZ VELASQUEZ, Antonio (Universidad Nacional Autonoma (MX)); PAZ, Antonio

Presenter: BENCEDI, Gyula (Universidad Nacional Autonoma (MX))

Session Classification: Poster Session

Track Classification: Heavy Ions