

Triggering in ATLAS in Run 2 and Run 3

ATLAS Trigger DAQ System

- Object based / topology based
 - High-p_T muons, e/γ, τ, hadron jets, missing E_T, ...
- Level 1 (L1):
 - Custom-made hardware (latency 2.5 μs)
 - Coarse granularity selection with high- p_T objects
- High-level trigger (HLT):
 - Software-based
 - More sophisticated selection
- Trigger-object level analysis (TLA)
 - For low-p_T physics, full event selection can be applied online using HLT objects [1]

Run-2 trigger menu

- To fulfill the requirement for the rich physics program of ATLAS, events are selected by ~1500 trigger "chains" in parallel
- Trigger chains: defined by the L1 decisions followed by relevant HLT algorithm
- **Trigger menu**: the list of trigger chains used in the data taking, evolved depending on the luminosity

Chain	Target events	L1 threshold	L1 Rate	HLT threshold	HLT rate
Single µ	At least one muon (<i>p</i> ⊤>27GeV) e.g. W→µv	20 GeV	~16 kHz	26 GeV	~218 Hz
Single e	At least one electron (<i>p</i> ⊤>27GeV) e.g. W→ev	22 GeV	~31 kHz	26 GeV	~195 Hz
Single jet	At least 1 jet (<i>p</i> ⊤>435GeV)	100 GeV	~3.7 kHz	420 GeV	~35 Hz
B-phys	2 muon with <i>p</i> ⊤>6 GeV B→µµ + X	L1Topo manages 2 <m<sub>μμ<9 GeV@L1</m<sub>	~1.4 kHz	4 <m<sub>μμ<8.5 GeV</m<sub>	~6 Hz
	~1500 chains run in parallel (some of them are "pre-scaled" for efficiency and performance measurements, background estimates or monitoring)				
Total	@2×10 ³⁴ /cm ² /s		~85 kHz		~1.75 kHz

https://cds.cern.ch/record/2693402/files/ATL-DAQ-PUB-2019-001.pdf

- The menu is changed during the run following the inst. luminosity[2]
- The bandwidth for TLA is increased after the luminosity is decreased, by the "end-of-fill" strategy

Triggering in ATLAS in Run 2 and Run 3

New features introduced in Run 2

(examples) missing E_T triggers

- The rate did not linearly depend on the lumi. in 2015
- Improved now after the optimization of pileup mitigation technique [3]

Topological triggers

- L1Topo managed the topological cuts at L1 e.g. dilepton mass, ΔR, jet substructure, etc.
- Reduced rate significantly, while keeping high efficiency for the target signals [4]

Cost/rate estimation frameworks

- A special "enhanced bias" dataset collected by the OR of L1 items, which can be used to estimate the cost/rate for the given trigger menu using the real data[2]
- With this framework, optimized the menus in Run 2, including the ones for different LHC bunch filling scenarios in 2017
- Menu optimization for Run 3 ongoing

Cost monitoring

To check CPU usage and data-flow over DAQ network

Rate monitoring

Triggering in ATLAS in Run 2 and Run 3

athenaMT for Run-3 HLT

- ATLAS software framework (athena) will be switched to multithreaded implementation (athenaMT)
- 2 types of MT implementation:
 - 1.Inter-event MT
 - * Multiple events in parallel
 - 2.Intra-event MT
 - * Multiple algorithms for an event in parallel
- Less memory usage, although the processing time is equivalent with multi-processing approach[5]
- HLT software has been fully upgraded, to be integrated into athenaMT framework
- athenaHLT managed the multi-processing in Run 2 → That feature is retained
- From Run 3, each sub-process is multithreaded[6]

Runtime and Memory Scaling for G4Hive

New features for Run 3 (examples)

 $\sqrt{s} = 14 \text{ TeV}, < \mu > = 80$

Offline electron pT for which this set of cluster cuts is 95% efficient [GeV]

Truth: $|\eta| < 1.37$, $1.52 < |\eta| < 2.5$

Run 3 eFEX, E₊ > 21 GeV

Run 3 eFEX, E_ > 28 GeV

Truth Electron E _ [GeV]

Run 2, L1_EM24VHI

- Inner coincidence can reduce the beam-induced fake muon background@endcap
- High efficiency for signals [7]

ATLAS Simulation Preliminary

New feature extractor processors (eFEX/jFEX)

- Upgraded LAr read-out (higher granularity) and new feature extrapolator (FEX) processors
- Tighter isolation and hadron background veto → higher efficiency and better rate reduction [8-9]

Speed up of HLT track seeding w/the machine learning

- Speed of HLT tracking is important especially for b, tau and the trigger for the unconventional signatures (e.g. long-lived particles)
- ML-based algorithm to select pairs of hits belonging to the same track, using angular and pixel cluster width → look-up table used in the trigger [10]

ATLAS

References

- 1. ATLAS Collaboration, Trigger-object Level Analysis with the ATLAS detector at the Large Hadron Collider: summary and perspectives, ATL-DAQ-PUB-2017-003. https://cds.cern.ch/record/2295739
- 2. ATLAS Collaboration, Operation of the ATLAS trigger system in Run 2, JINST 15 (2020) P10004. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TRIG-2019-04/
- 3. ATLAS Collaboration, Performance of the missing transverse momentum triggers for the ATLAS detector during Run-2 data taking, JHEP 08 (2020) 80. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TRIG-2019-01/
- 4. ATLAS Collaboration, Performance of the ATLAS Level-1 topological trigger in Run 2, submitted to EPJC, 2021. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TRIG-2019-02/
- 5. G. A. Stewart, et. al., Multi-threaded software framework development for the ATLAS experiment, J. Phys.: Conf. Ser. 762 (2016) 012024. https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012024
- 6. R. Bielski, ATLAS High Level Trigger within the multi-threaded software framework AthenaMT, J. Phys.: Conf. Ser. 1525 (2020) 012031. https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012031
- 7. ATLAS Collaboration, L1 Muon Trigger Public Results web page. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1MuonTriggerPublicResults
- 8. ATLAS Collaboration, Level-1 Calorimeter Trigger Public Results web page. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults
- 9. ATLAS Collaboration, Technical Design Report for the Phase-I Upgrade of the ATLAS TDaq System, ATLAS-TDR-023, 2013. https://cds.cern.ch/record/1602235/
- 10.ATLAS Collaboration, HLT Tracking Public Results web page. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults