Physics motivation

- **b**-quarks play an important role in many particle physics analyses
 - 3rd generation particle
 - Decay product of top quarks and Higgs boson
- Fully hadronic final states
 - \(HH \rightarrow b\bar{b}bb, bH \rightarrow b\bar{b}b \)
 - \(t\bar{t}H \rightarrow bq\bar{q}' b\bar{q}' \bar{b} \)
 - \(g\bar{g} \rightarrow b\bar{b}bb + \text{MET} \)
 - ...

Challenges to overcome

- Huge jet background (from lighter quarks and gluons)
- Efficient selection \(\rightarrow \) Low jet \(p_T \) threshold
- Real-time selection \(\rightarrow \) CPU efficient

ATLAS trigger system

The ATLAS trigger has two levels:

Level1

- Hardware-based
- Utilises calorimeter and muon detector informations
- Regions of Interest (RoIs) are identified around calorimeter jets

High Level Trigger (HLT)

- Software-based
- Utilises information from whole detector or RoIs
- Reconstruction algorithms close to offline algorithms

[1]
ATLAS b-jet trigger

Goal: Identify and separate jets stemming from light quarks or gluons (light-jets), and heavy quarks (c- or b-jets)

Identification: Relies on exploiting b-hadron properties
- Long lifetime
- Secondary vertex
- Large impact parameters
- Large mass of displaced vertex
- Possible semi-leptonic decays

General overview of b-jet trigger workflow

HLT jets:
- Anti-kt ($R = 0.4$) jet clustering algorithm inside RoIs
- Pile-up subtraction + E_t and η calibration

Primary-vertex (PV) finding:
- Super-RoIs are defined as a combination of all jet RoIs
- Narrow in $\eta - \phi$, full z-range

Fast tracking only performed within super-RoI (CPU saving)
- PV defined as combinations of tracks compatible in z-position with largest $\sum p_T^2$ (as in offline)

Precision tracking:
- Fast tracking inside RoIs + track candidate overlap resolution
- Uniform performance vs. p_T
- Apply offline calibration to HLT jets

Flavour tagging:
- Multivariate analysis techniques to combine many weakly separating quantities into one strong flavour tagger
- Aim: Similar algorithm to offline (true for beginning of Run-2)
- Reach highest combined tagging efficiency (online \times offline)
- Tagger trained on mixture of $t\bar{t}$ and Z' samples
- Z' to reduce overtraining at high p_T (above ~ 250 GeV)
- Lowest unprescaled single b-jet triggers are at 225 GeV
- Performances has improved over the years
- Stable performance with increasing pile-up

Precision Tracking

Flavour Tagging
Triggers in heavy ion collisions

- Study energy loss mechanism of partons inside quark-gluon-plasma
- Predicted to be smaller for heavy quarks ('dead cone' effect)
- High rates and CPU cost from tracking do not permit using same triggers as in pp runs
- Require geometric match of muon and jet (Muon-jet triggers)
- Additional light-jet suppression allows to lower E_T threshold

Tagger calibration

- Scale factors (SFs) to correct for data-MC differences
 - $\text{SF}_b = \frac{\epsilon_{b,\text{data}}}{\epsilon_{b,\text{MC}}}$; $\epsilon_b = b$-tagging efficiency
- Derived in tbar dilepton ($\mu\mu bb$) enriched data
- Per-jet SFs available

- Overall efficiency for physics analysis: $\epsilon_{b,\text{Trig|Off}} \times \epsilon_{b,\text{Off}}$

References

1. ATLAS Collaboration, ApprovedPlotsDAQ, ApprovedPlotsDAQ
2. ATLAS Collaboration, Configuration and performance of the ATLAS b-jet triggers in Run 2, TRIG-2018-08
3. ATLAS Collaboration, HLT Tracking Public Results, HLTTrackingPublicResults
4. ATLAS Collaboration, Public Jet Trigger Plots for Collision Data, JetTriggerPublicResults
5. ATLAS Collaboration, Public b-Jet Trigger Plots for Collision Data, BJetTriggerPublicResults