Projections for jet quenching measurements in OO collisions at $\sqrt{s_{NN}} = 6.37$ TeV during the LHC Run3

Filip Krizek for the ALICE Collaboration

- Small systems: evidence of collectivity but no evidence of jet quenching signal within current experimental resolution. Is the QGP produced?
- OO at $\sqrt{s_{NN}}$ = 6.37 TeV, system size is between p-Pb a Pb-Pb
- $L \approx 0.5 1 \text{ nb}^{-1}$ provides sufficient precision for jet quenching detection in minimum bias OO [Huss et al. arXiv hep-ph 2007.13754]
- ALICE has multiple, systematically independent approaches, which is essential for data driven discovery of a small effect

Projection for R_{AA} for inclusive hadrons in min. bias events

Nuclear modification factor for minimum bias cross sections $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

$$R_{AA} = \frac{1}{A^2} \frac{d \,\sigma_{OO}^h / dp_T}{d \,\sigma_{pp}^h / dp_T}$$

Scaling factor of $\,$ of pp reference $\,$ from the Glauber theory is $\,$ $\,$ $\,$

Luminosities used in the projection:

OO
$$\sqrt{\text{s}_{\text{NN}}}$$
 = 6.37 TeV L_{OO} = 1 nb⁻¹

pp
$$\sqrt{\text{s}}$$
 = 5.02 TeV L_{pp} = 3 pb⁻¹

Calculation which assumes no energy loss and which accounts just for nuclear PDFs

Calculations which assume energy loss models together with nuclear PDFs [Huss et al. arXiv hep-ph 2007.13754]

ALICE projection:

data points follow a mean energy loss model In the range up to 50 GeV/c:

- statistical precision < 1.5%
- systematic precision 4–6%
 - interpolation error ≤ 3%
 - cross section normalization 3%
 - other systematics 2-4%

Planned OO run will have sufficient precision to measure jet quenching from this projection

2

Jet quenching measurements with semi-inclusive hadron+jet observable

Observable: $p_{\scriptscriptstyle T}$ spectrum of charged-particle jets which recoil in azimuth from a high- $p_{\scriptscriptstyle T}$ hadron

Jet $p_{\scriptscriptstyle T}$ is corrected for the expected underlying event contribution

Data driven approach to suppress combinatorial jets including multi-parton interactions

$$\Delta_{\text{recoil}} = \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{dp_{\text{T,jet}}^{\text{ch}}} \Big|_{\text{TT}_{\text{Sig}}} - c_{\text{ref}} \cdot \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{dp_{\text{T,jet}}^{\text{ch}}} \Big|_{\text{TT}_{\text{Ref}}}$$

No assumption about collision geometry needed since we measure per trigger yields

Simulations for projected integrated lumi.

Limits on E transport out of R=0.4 cone

 $\Delta_{\text{recoil}}^{\circ\circ}/\Delta_{\text{recoil}}^{\text{pp}}$ is a constant depending on pp spectrum slope b and shift s **ALICE**

Projection for the spectrum shift measurement ($L_{\rm OO}$ = 1 nb⁻¹, $L_{\rm pp}$ = 3 pb⁻¹) :

OO/pp: $\bar{s} > 0.16 \text{ GeV/}c (90\% \text{ CL})$

 $OO_{0-20\%}/OO_{50-100\%}$: $\bar{s} > 0.14 \text{ GeV/c} (90\% \text{ CL})$

The shifts correspond to $R_{AA} \sim 0.98 \rightarrow sensitive$ to smaller effects than inclusive hadrons

