





# Analysis of b-jet production in p–Pb and pp collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV with ALICE

Artem Isakov for the ALICE Collaboration, Nuclear Physics Institute of the CAS, Řež

Due to their large mass, b quarks are produced in initial hard scatterings and their production rate is calculable from perturbative quantum chromodynamics. In heavy-ion collisions, the production of b jets is affected by jet quenching and cold nuclear matter (CNM) effects. The size of the CNM effects can be assessed from the measurement of b-jet production in p–Pb collisions.

b jets can be efficiently tagged through displaced decay vertices of b hadrons ( $c\tau \approx 500 \ \mu m$ ). The ALICE experiment at the LHC [\*] reconstructs such vertices with help of excellent tracking capabilities of the Inner Tracking System detector.



[\*] ALICE Collaboration, B. Abelev et al., "Performance of the ALICE Experiment at the CERN LHC" Int.J.Mod.Phys. A29, 1430044 (2014).

Figure 1.: Cross section of the ALICE detector in the plane perpendicular to the beam showing the Inner Tracking System (green), the Time Projection Chamber (blue) and the solenoidal magnet (red).

#### LHCP 2021

### **Reconstruction of b-jet candidates**

- **Charged-particle** based jets were reconstructed using the **anti-** $k_{T}$  algorithm with R = 0.4, where R is the radius of the jet cone.
- Jet constituents have  $p_{T} > 150 \text{ MeV}/c$  and pseudorapidity  $|\eta| < 0.9$ .
- Pseudorapidity of jets was constrained to  $|\eta_{iet}| < 0.5$ .
  - Two independent methods were used for b-jet tagging
    1) Impact parameter method distance of closest approach of jet constituents to primary vertex.
    2) Secondary vertex (SV) method properties of most displaced 3-prong secondary vertex.

Discrimination variables to tag b-jet candidates and suppress the admixture of light-flavor and c-quark jets used in the SV method:

→ Minimal significance of the SV displacement:  $SL_{xy} = L_{xy}/\sigma_{Lxy}$  $L_{xy}$  – distance between primary and secondary vertices

 $\sigma_{Lxy}$  – uncertainty of  $L_{xy}$  measurement

→ Upper limit on the SV resolution:  $\sigma_{sv} = \sqrt{\sum_{i=1}^{3} d_i^2}$ 

 $d_i$  – distance of closest approach (DCA) of the i-th prong to the SV

Default cut:  $\sigma_{sv} < 0.03$  cm,  $L_{xy}/\sigma_{Lxv} > 7$ 

Jet Secondary vertex 071 071 **Primary** vertex Figure 2: Illustration of the b-jet tagging algorithm via SV

reconstruction.

## **Correction of b-jet spectra**

Measured spectrum of b-jet candidates needs to be corrected for SV tagging purity and efficiency:

$$\frac{dN_{b-jet}^{primary}}{dp_{T,jet\,ch}} = \frac{dN_{b-jet\,candidates}^{raw}}{dp_{T,jet\,ch}} \times \frac{P_b}{\varepsilon_b}$$

 $\boldsymbol{\varepsilon}_{\rm b}$  – probability that true b jet will pass SV tagging selections.

 $P_{b}$  – fraction of true b-jets among all tagged b-jet candidates.

#### Purity of b-jet candidates is estimated from:

a) data-driven SV invariant mass template fit method

b) POWHEG simulation based approach, where

$$p_{b} = \frac{N_{b}\varepsilon_{b}}{N_{b}\varepsilon_{b} + N_{c}\varepsilon_{c} + N_{LF}\varepsilon_{LF}}$$

 $N_{\rm b}$ ,  $N_{\rm c}$  – <u>POWHEG</u>  $p_{\rm T}$  spectrum of b and c-jets folded with the response matrix

 $N_{LF} - p_{T}$  spectrum of ligth flavour-jets (LF):  $N_{LF} = N_{raw} - N_{b} - N_{c}$   $N_{raw} - raw p_{T}$  spectrum of inclusive jets  $\varepsilon_{b}, \varepsilon_{c}, \varepsilon_{LF}$  - efficiency of SV tagging for b, c and LF jets

POWHEG variations were required to provide purity compatible with the data-driven method.



Figure 3: b-jet tagging efficiency and mistagging efficiency for c jets and light-flavor jets



Figure 4: b-jet purities from the data-driven template fit method and the POWHEG for the optimal MC settings

#### Results







- Fully corrected  $p_{\tau}$ -differential inclusive production cross section of charged-particle b jets in p-Pb is compatible with calculation by POWHEG HVQ simulation with EPS09NLO pdfs.
- The ALICE measurement of charged b-jet R<sub>pPb</sub> is compatible with the analogous CMS measurements for full-jets. No strong CNM effects present in p–Pb.

[\*] CMS Collaboration, Phys. Lett. B754 (2016)

LHCP 2021



Figure 6: The nuclear modification factor  $R_{pPb}$  for charged-particle b jets measured by the ALICE experiment, compared with the b-jet measurement from the CMS experiment [\*].