NEW IDEAS ON DETECTOR TECHNOLOGY FOR THE ILC EXPERIMENTS

Bohdan Dudar on behalf of the ILC International Development Team

Deutsches Elektronen-Synchrotron DESY, FTX group

ILC environment

- $\rightarrow \sqrt{s} = 250 \text{ GeV} \text{ (upgrades to 1 TeV)}$ extendable
- → Instantaneous Luminosity $1.35 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1} (\sqrt{s} = 250 \text{ GeV})$
- → Push-pull system for detectors

Figure 1: Schematic overview of the ILC.

- \rightarrow 5-10 Hz train repetition rate enables power pulsing
- \rightarrow No pile-up
 - $0.1 \text{ hadronic } e^+e^- \text{ events per bunch train}$
- \rightarrow No hardware trigger

Figure 2: SiD (left) and ILD (right) detectors proposed for the ILC.

Detector performance requirements

Performance benchmark	Achievable	Needed for	Physics goals	
Jet energy res.	~ 3-4 %	W/Z/t-ID	W/Z precision physics	
Vertex position res.	$\sim 3 \mu \mathrm{m}$	$b/c/\tau$ tagging	Higgs couplings	
Track momentum res.	$2 \cdot 10^{-5} \text{ GeV}^{-1}$	Recoil mass	Higgs mass	
Luminosity	$\sim 10^{-4}$	Cross section	Higgs total width	
Hermeticity	$\sim 6 \text{ mrad}$	missing 4-momentum	Dark Matter	

Power pulsing

Integral feature of the detectors at the ILC due to a low beam-enduced radiation

Enough time to

electronics

Train ~1ms

switch off readout

Less material

~200 ms

Particle flow with highly granular calorimeters

particle flow approach.

Figure 3: Reconstruction of a jet energy using the Figure 4: Jet energy resolution achievable at the ILC with the Pandora particle flow algorithm.

Low Gain Avalanche Detector (LGAD) Si sensors

- → Novel Si sensor technology
- \rightarrow 20-30 ps time resolution is achievable
- \rightarrow 4D (x, y, z, t) tracking

Applications:

5-10 Hz train

repetition rate

No need for active

Beam

Electronic

- \rightarrow Considered to include in ECAL or SET of \rightarrow 5D (x, y, z, t, E) calorimetry
- ILC detector concepts
- → Particle ID for charged hadrons

Figure 7: Relative velocity β calculated with timeof-fligh versus momentum p bands for π^{\pm} , K^{\pm} , pparticles. Bands are distinguishable up to 4-5 GeV momentum. Time resolution of 50 ps is assumed

Reduces power

heat emission

consumption and

Better track/vertex reconstruction

Train ~1ms

Figure 8: Separation power of time-of-flight (TOF) approach for ILD detector in contrast with dE/dxmethod.

Forward region calorimeter for luminosity measurement

Lumical prototype

- \rightarrow Luminosity measurement from low-angle \rightarrow Very low power consumption Bhabha scattering
- \rightarrow test-beams in 2014, 2016 and 2020
- \rightarrow Effective Molière radius $\approx 8.1 \, \mathrm{mm}$
- \rightarrow Position resolution $\approx 0.44 \,\mathrm{mm}$

Figure 5: The LumiCal prototype during the test beam in 2020. Three first sensors are equipped with the dedicated FLAME readout boards.

Dedicated readout ASIC (FLAME)

- \rightarrow fast 10-bit ADC in each channel

GaAs sensors for the BeamCal

- \rightarrow Radiation hard (1.5 MGy for 8-21 MeV e^-)
- → Tracing technology allowing thin sensors

Figure 6: Photograph of the FLAME ASIC.

Vertex decector

Vertex detector requirements:

 $\rightarrow 0.12$ - 0.15% X₀ material

 $\rightarrow 3 \mu m$ vertex spacial resolution

Several technology options:

- \rightarrow CMOS
- \rightarrow DEPFET
- \rightarrow FPCCD

Figure 9: BELLE II DEPFET vertex detector. One of the options considered for the ILC.

Extendibility

- → No synchrotron radiation at the linear colliders
- → Potential for Multi-TeV energy upgrades with the development of new acceleration technologies

Technology	ILC Nb	ILC Nb ₃ Sn	CLIC	PWFA DLA
Acceleration gradient	35 - 50 MV/m	120 MV/m	100 MV/m	1 GV/m
Energy	0.5 - 1.5 TeV	4 TeV	3 TeV	30 TeV

- → **Diverse** and **long-term** physics program
- → New challenges for the detector design at the ILC?

