

Angular correlations of heavy-flavour decay electrons and charged particles in pp collision at \sqrt{s} = 5.02 TeV with ALICE at LHC


Ravindra Singh Indian Institute of Technology Indore (IN) (for the ALICE collaboration) <u>ravindra.singh@cern.ch</u>

Measurement and Motivation:

- Two particle azimuthal angular correlations are triggered by electrons from heavy-flavour hadron decays and can be used for heavy-flavour jet studies.
- By changing the momentum scales of the trigger and associated particle, one can study the heavy-flavour jet structure, interplay of soft and hard processes^[1].
- In pp collisions, heavy-flavour correlations can be used to study the production and fragmentation of heavy-quarks.

ALICE Apparatus:

 Inner tracking system (ITS) and Time Projection Chamber (TPC): |η| < 0.9.

> Electromagnetic calorimeter (EMCal): $|\eta| < 0.7, 80^{\circ} < \varphi < 187^{\circ}.$

> Di-jet calorimeter (DCal): $|\eta| < 0.7, 320^{\circ} < \varphi < 327^{\circ}, 0.22 < \eta < 0.7, 260^{\circ} < \varphi < 320^{\circ}$

Analysis procedure:

- Inclusive electrons (IncE) are identified by TPC and EMCal + DCal detectors.
- > Obtain $(\Delta \varphi, \Delta \eta)$ distribution between inclusive electrons and charged particles.

charged particle correlat

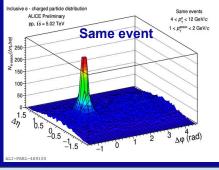
Mixed event

-1 0 1

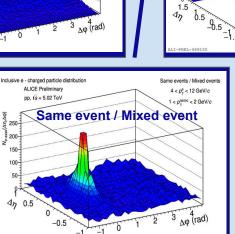
ALICE Prelimina

30.8

0.4


≥ 0.2

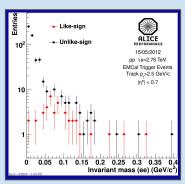
Mixed events


4 < p° < 12 GeV/c

1 < passoc < 2 GeV/c

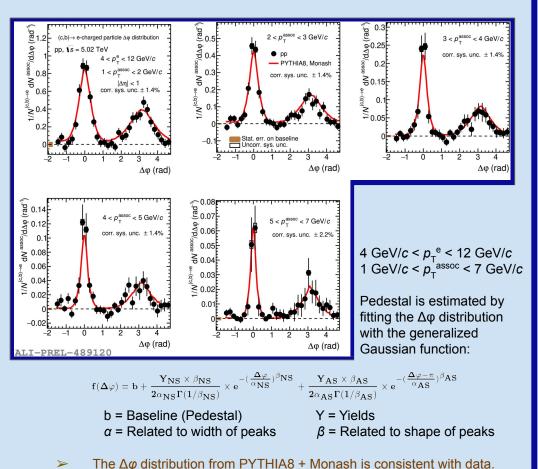
Detector effects are corrected using mixed event technique.

T-PRET-48914

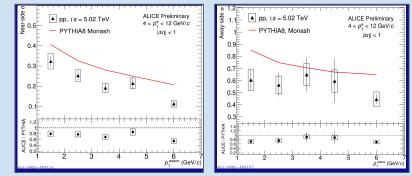

 Hadron contamination is removed in the electron sample by using E/p distribution.

	1600 1400		<u> </u>
	Ę	Electron candidates	ALICE Preliminary
	ш1400	Hadrons 🕴 🛉	p-Pb, V s _{NN} = 5.02 TeV
	1200	E-	-
	1000	-	4 < p ^e _T < 12 GeV/c
	1000	-	
	800		-
	600	-	
		F	-
	400	-	-
	200	-	-
	0		-
			1.2 1.4 1.6 1.8 2 E/p
1	ALI-PERF	-134536	

 Non-HF decay electrons extracted from invariant mass distribution of like and unlike-sign electron pairs.


 $\Delta \varphi_{\text{NonHFE}} = (1/\epsilon_{\text{NHFE}}) \Delta \varphi_{\text{Reco-NonHFE}}$

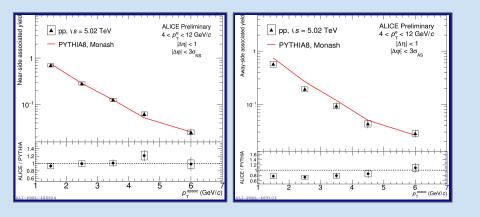
Where, $\mathcal{C}_{\text{NHFF}} \rightarrow \text{Tagging efficiency}$



- $\succ \qquad \mbox{Correlations between c,b} \rightarrow \mbox{e and charged particles:} \\ \Delta \varphi_{HFE} = \Delta \varphi_{IncE} \Delta \varphi_{NonHFE}$
- ➤ Tracking efficiency and purity correction for secondary particles are implemented → normalized with the number of triggered heavy-flavour decay electrons.

$\Delta \varphi$ distribution of heavy-flavour electrons and charged particles:

Near and away-side sigma (σ):

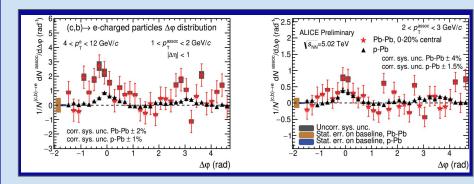


 Near and away-side sigma is extracted from the fitting parameters (α,β) with the relation^[2]:

$$\sigma = \sqrt{\alpha \Gamma(1/\beta) \Gamma(3/\beta)}$$

> The near and away-side sigma are compared with PYTHIA \rightarrow consistent within 1-2 σ

Near and away-side yields:



- > Near and away-side yields are measured by the bin counting method in the region of $|\Delta \varphi| < 3\sigma$.
- > Near-side yield is consistent with PYTHIA.
- > Away-side yield is consistent with PYTHIA at higher p_T and overestimates by 20% at lower p_T .

PYTHIA predictions of fragmentation processes in heavy-flavours are in good agreement with data.

Outlook:

• $\Delta \varphi$ distribution of p-Pb and central Pb-Pb collisions:

 Enhancement observed at near-side peak in Pb-Pb compared to p-Pb, although the large uncertainties in Pb-Pb analysis do not allow for a firm conclusion.

New measurements from p-Pb and Pb-Pb will improve the precision of the results.