Search for charged Higgs bosons decaying to $W^{\pm}W^{\pm}$ or $W^{\pm}Z$ in 139 fb^{-1} of $\sqrt{13}$ TeV pp collinsions with the ATLAS detector

Iulia-Stefania Trandafir

University of Bucharest and IFIN-HH On behalf of the ATLAS Collaboration

LHCP 2021

Signal Model

Type-II seesaw Model (Phys. Rev. D84(2011)095005) \rightarrow can explain the small neutrino masses

- Extends the scalar sector of the SM with a scalar triplet (Δ)
- EWSM achieved by requiring the neutral components of the SM Higgs and Δ to acquire vacuum expectation values (v_d and v_v)
- After EWSB $\rightarrow H^{\pm\pm}$, H^{\pm} , A^0 (CP odd), H^0 (CP even), h^0 (SM Higgs) scalar bosons
- Main assumption: $v_v = 0.1 \text{ GeV}$

Two production mechanisms of the $H^{\pm\pm}$ and H^{\pm} bosons considered:

- Pair Production (figure a): only $H^{\pm\pm}$ and SM h^0 in the observable range
- Assosciated Production (figure b): $m_{H^{\pm}} \approx m_{H^{\pm\pm}}$ (5 GeV difference)

Iulia-Stefania Trandafir LHCP - 7-12 June 2021

Analysis Strategy

Three final states (channels)

classified according to the number of leptons: $2\ell^{SC}$, 3ℓ and 4ℓ

- $2\ell^{SC}$ channel divided in ee, $e\mu$ and $\mu\mu$ sub-channels
- 3\ell divided in two sub-channels, depending on the no. of SFOC pairs (SFOC0 and SFOC1,2)

Selection criteria	2ℓ ^{sc}	3ℓ	4ℓ
At least one offline tight lepton with $p_T^{\ell} > 30$ GeV that triggered the event			
N_ℓ (type L)	=2	=3	=4
N_{ℓ} (type L*)	-	-	=4
N_ℓ (type T)	=2	$\geq 2 (\ell_{1,2})$	≥1
$ \sum Q_{\ell} $	=2	=1	≠4
Lepton p _T	$p_T^{\ell_1,\ell_2} > 30, 20 \text{ GeV}$	$p_T^{\ell_0,\ell_1,\ell_2} > 10, 20, 20 \text{ GeV}$	$p_T^{\ell_1,\ell_2,\ell_3,\ell_4} > 10 \text{ GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 70 GeV	> 30 GeV	> 30 GeV
N _{jets}	≥ 3	≥ 2	-
$N_{b ext{-jets}}$	=0		
Low SFOC $m_{\ell\ell}$ veto	-	$m_{\ell\ell}^{\infty} > 15 \text{ GeV}$	
Z boson decay veto	$ m_{ee}^{sc} - m_Z > 10 \text{ GeV}$	$ m_{ff}^{oc} - m_Z > 10 \text{ GeV}$	

Two main background categories:

- SM background: leptons from prompt leptonic decays of W and Z bosons
- Detector background:
 - electron charge-flip (\sqrt{y} by ECIDS tool)
 - fake/non-prompt leptons (\sqrt{sqrt})
 by non-prompt lepton veto)

Results and Limits

- The uncertainties associated to the charge-flip background is small in all SRs
- The statistical uncertainties on the fake/NP leptons estimate or the theory uncertainty are dominant in the SRs
- No significant excess in any of the signal regions is observed

- For the charged Higgs pair production and associated production cross-section times branching fraction (95% CL)
- Obtained from the combination of $2\ell^{SC}$, 3ℓ and 4ℓ SRs
- Charge Higgs boson masses excluded up to 350 GeV for the PP mode and up to 220 GeV for the AP mode

4 D > 4 A > 4 E > 4 E > 9 Q P

Iulia-Stefania Trandafir LHCP - 7-12 June 2021