

Measurement of the $t\bar{t}t\bar{t}$ production cross-section in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Based on ATLAS-CONF-2021-013

Martin Murin, on behalf of the ATLAS collaboration

Large Hadron Collider Physics Conference 2021

The University of Manchester

Very rare

top process!

Leading QCD production

Leading order Higgs / EW Feynman diagram

H

g

g

00000

00000

Top-Yukawa coupling

The tttt cross section is sensitive to the magnitude and **CP properties** of the Yukawa coupling of the top quark and the Higgs boson

 $\sigma_{t\bar{t}t\bar{t}} = 12.0 \pm 2.4$ fb at NLO QCD + EW

SM cross section at 13 TeV:

Sensitivity to BSM

Enhancement of the tttt cross section...

In **SUSY** via gluino pair production In **two-Higgs-doublet model** (2HDM) via production of heavy pseudoscalar boson Four fermion couplings in **EFT**

Large Hadron Collider Physics Conference 2021

The University of Manchester

2. ANALYSIS CHANNELS

Measurement of the tttt production cross-section

3. ANALYSIS OVERVIEW

Main background tt+jets

Fig. 3: Relative contribution of signal and backgrounds in all

regions in 1L (left) and 2LOS (right) channels

tt+bb is the main background in the signal sensitive regions

Regions used in the analysis

Fig. 4: Schematic view of the event categorisation

Reweighting factors R(x)derived in 2b regions and propagated to CR/SR regions

Corrects the underestimation of $t\bar{t}$ + heavy flavour (HF) jets production in MC simulation • Factors derived from fit to data exploiting different tt+jets flavour fractions across regions defined by various b-tagging requirements

Used to mitigate the kinematic mismodelling observed in $t\bar{t} + jets$ MC $Data(x) - MC^{non-t\bar{t}}(x)$ • The reweighting factors R(x) are used to correct distributions of the R(x) = $\mathrm{MC}^{t\bar{t}}(x)$ variables most representative of the global kinematics of the events:

Large Hadron Collider Physics Conference 2021

The University of Manchester

Pre-fit corrections to MC mismodelling of $t\bar{t}$ +HF

A) Flavour rescaling

B) Sequential kinematic reweighting

Fig. 5: The N_{iets} and H_{T}^{all} distributions in the $(N_{iets} \ge 8, N_{b-iets} \ge 3)$ region in the 1L channel before (left) and after (right) the corrections

4. 1L/2LOS RESULTS

Binned profile likelihood fit to extract tttt signal strength μ , defined as the ratio of the measured tttt production cross-section to that predicted by the Standard Model. There are 21 regions used in the fit (12 in 1L + 9 in 2LOS) in which **BDT** and H_{τ}^{all} are fitted in signal and control regions respectively.

Fitted signal strength in 1L/2LOS: $\mu = 2.2 \pm 0.7 (\text{stat.})^{+1.5}_{-1.0} (\text{syst.}) = 2.2^{+1.6}_{-1.2}$

Measurement **uncertainty** dominated by **modelling** of $t\bar{t}t\bar{t}$ signal and the $t\bar{t}+HF$ background

Uncertainty source	$\Delta \sigma_{t\bar{t}t\bar{t}}$ [fb]	
Signal Modelling		
<i>tītī</i> modelling	+8	-3
Background Modelling		
$t\bar{t} + \geq 1b$ modelling	+8	-7
$t\bar{t} + \geq 1c$ modelling	+5	-4
$t\bar{t}$ +jets reweighting	+4	-3
Other background modelling	+4	-3
$t\bar{t}$ +light modelling	+2	-2
Experimental		
Jet energy scale and resolution	+6	-4
<i>b</i> -tagging efficiency and mis-tag rates	+4	-3
MC statistical uncertainties	+2	-2
Luminosity	< 1	
Other uncertainties	< 1	
Total systematic uncertainty	+15	-12
Statistical uncertainty	+8	-8
Total uncertainty	+17	-15

Fig. 6: Observed & expected event yields

Tab. 1: Contribution from different systematic sources to the measured tttt production cross section

Large Hadron Collider Physics Conference 2021

Combination of 1L/2LOS with 2LSS/ML was performed via a simultaneous profilelikelihood fit in all regions of both analyses with all systematic uncertainties.

5. COMBINATION RESULTS

- Different dominant systematics
 - in the two channels
 - \rightarrow impact of correlations is small

Combined result for 1L/2LOS and 2LSS/ML channels $\sigma_{t\bar{t}t\bar{t}\bar{t}} = 25^{+7}_{-6} \text{ fb}$ **4.7 σ** (2.6 σ expected)

Measured cross section is **consistent with SM** within 2.0 standard deviations

REFERENCES

- [1] The ATLAS collaboration, J. High Energ. Phys. 2018, 39 (2018). arxiv:1807.11883
- [2] The ATLAS collaboration, Phys. Rev. D 99 052009. arxiv:1811.02305
- [3] The CMS collaboration, Eur. Phys. J. C 78, 140 (2018). arxiv:1710.10614
- [4] The CMS collaboration, J. High Energ. Phys. 2019, 82 (2019). arxiv:1906.02805
- [5] The CMS collaboration, Eur. Phys. J. C 80, 75 (2020). arxiv:1908.06463
- [6] The ATLAS collaboration, Eur. Phys. J. C 80, 1085 (2020). arxiv:2007.14858