Constraining the Dark Sector with the Mono-jet signature with the ATLAS detector at the LHC

Motivations:

Long Lived Particles (LLPs) are foreseen by many BSM scenarios.

ISR + undetected LLPs =

Mono-jet topology (energetic jet recoiling against high E_T^{miss}) \rightarrow The Mono-jet analysis is a powerful tool to study models predicting the existence of LLPs, providing **complementary sensitivity** compared to the dedicated searches.

Elena Pompa Pacchi – INFN sezione di Roma and Sapienza Università di Roma 7/12 June 2021

Prompt Displaced Very displaced

(Mono-jet) 10^{2} $B(H \rightarrow 2\gamma_d + X)$ 10 10^{-1} Monoiet Muonic channel Hadronic channel 10^{-2} Mixed channel All channels 10^{-3} EPJC 80 (2020) 450 - Muonic channel **ATLAS** Preliminary -- Hadronic channel 10^{-4} √s=13 TeV, 139 fb⁻¹ --- Mixed channel arXiv:2102.10874 m.=125 GeV 10^{-5} H → inv (Monojet) =400 MeV ATLAS-CONF-2020-052 95% CL limits \bigcirc H \rightarrow inv (Combination) 10^{3} 10^{2} 10^{5} 10 10^{4} Dark photon ct [mm] $5 \times B(H^{+} \rightarrow 2\gamma_d^{+}X)$ [pb] 10 Stabl 10 Monojet Muonic channel Hadronic channel — Mixed channel ATLAS Preliminary 10-2 — All channels √s=13 TeV, 139 fb⁻¹ EPJC 80 (2020) 450 mu=800 Gev - Muonic channel m_v =400 MeV Hadronic channel 95% CL limits - Mixed channel 10^{4} 10^{5} 10^{2} 10 Dark photon $c\tau$ [mm]

Results (FRVZ model)

B(H_{inv}) (=34% by Mono-jet) is

approached but not reached $(B(H \rightarrow 2\gamma_d + X) \text{ tends to } 50\% \text{ at} \text{ large } \tau_{\gamma d})$, due to the fact that to obtain the limit on $B(H_{inv})$ all the productions mechanism of the Higgs boson are considered, while here only ggF is taken into account.

Model with heavier mediator

The limits on the B(H' \rightarrow 2 γ_{d} +X) at given proper τ^*_{vd} are obtained through a life-time reweighting procedure, that assigns to each event a weight representing the probability that such event could have been originated from a different sample with mean proper life-time τ^*_{vd} . When τ^*_{vd} is far from the τ_{vd} of generation (here 10 and 100 mm), the MC statistical uncertainty of the events increases. For this reason the limits on B(H' $\rightarrow 2\gamma_d + X$) worsen at high τ_{vd} , instead of reaching a plateau at their minimum.

The Mono-jet analysis is sensitive to scenarios in which dark photons decay outside the reach of the ATLAS detector

→ Complementarity wrt dedicated searches! 3

Results (H\rightarrow ss model)

B(**H**_{inv}) (=34% by Mono-jet) is approached but not reached (B(H \rightarrow ss) tends to 50% at large τ_s), due to the fact that to obtain the limit on B(H_{inv}) all the production mechanisms of the Higgs boson are considered, while here only ggF is taken into account.

The Mono-jet analysis is sensitive to scenarios in which the s scalar particles decay outside the reach of the ATLAS detector→ Complementarity wrt

dedicated searches!