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INTRODUCTION

At LHC events are produced at a frequency
of 40 MHz and events that are discarded by
the trigger are lost. To improve selection
performance there is a great interest in
running Deep Neural Networks in
real-time.

FPGA (Field-programmable gate array) can

fit this task (low latency and high throughput).

Depending on the FPGA size, we should
know how to reduce the size of a model.
Baseline techniques are pruning and
quantization [1].

Here we propose an approach to select
only relevant features using a CancelOut
layer.
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BENCHMARK APPLICATION

We developed an H—bb tagger for pp collision
experiments based on a Deep Neural Network to
identify jets that contain both the b quarks from
boosted H decay.

Dataset

4x108 simulated events of pp-collision at 14 TeV
Each candidate (39 features) is a large radius
jet (anti-kT jet with R = 1) with the 2 variable
radius track jets (R,,,,~ 0.4,R, . =0.02, p = 30)
contained in the large radius jet with highest p_.
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CancelOut layer [2] can rank relative
importances among features in input to a Deep
Neural Network at training time.

We developed a modified architecture to
activate only a certain number (defined by
the user) of features having under control the
performances.

It can be easily added to existing models and
used together with other neural network
reduction approaches.

In this form CancleOut can be used to:

1.  Reduce the number of input nodes
2. Prune hidden layer nodes
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RESULTS
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Performance aware hidden nodes pruning that
can be easily applied by adding a hidden
CancelOut layer.

After a certain number of features are activated, there
is no significant improvement in the performance.
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