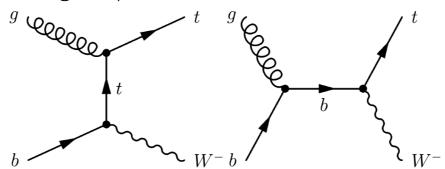
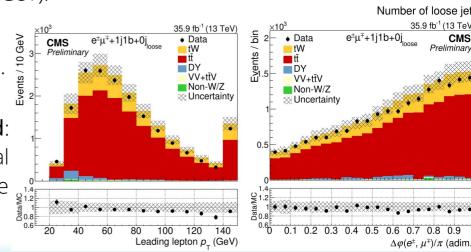


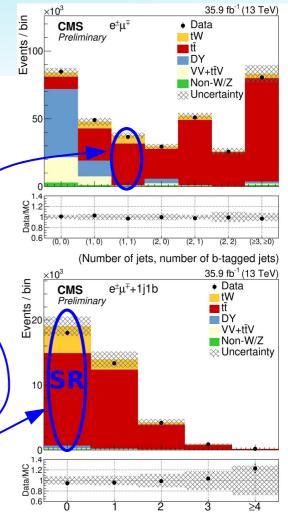
11-06-2021 LHCP 2021


Differential cross section measurements of the tW process at CMS

Víctor Rodríguez Bouza (on behalf of the CMS Collaboration)

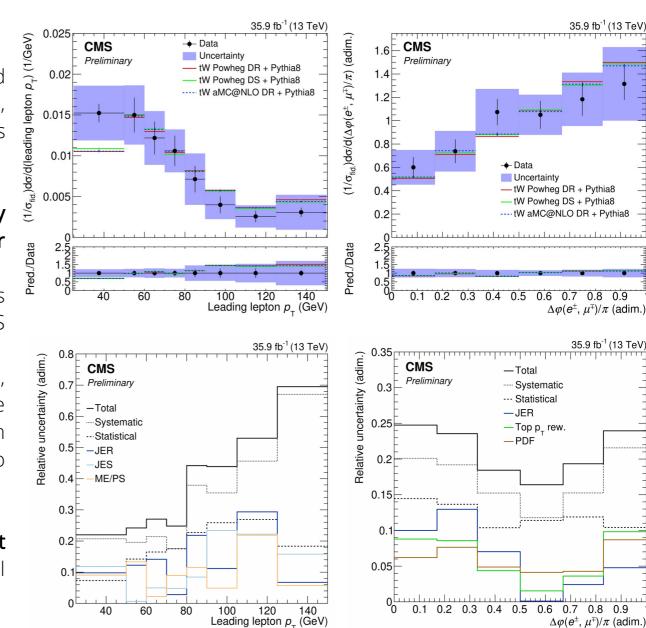
Introduction


• The CMS' latest measurement of single top differential cross sections has been done on the tW process with 2016 data using dilepton final states (CMS-PAS-TOP-19-003).



- ullet Main challenge: **background** *largely* **dominates signal**, being the most important $tar{t}$.
- **Interference** between signal and ttbar processes **at NLO**. In order to resolve both processes' definitions, and avoid double counting issues, two approaches (**JHEP 07 (2008) 029**) are used to simulate tW events.
 - Diagram Removal (**DR**): we remove Feynman diagrams that might present two on-shell tops (also called *double resonant*).
 - Diagram Subtraction (**DS**): we remove locally the pair-production contribution by adding an artificial term in the calculation.
- The differential cross sections are measured as a function of the leading lepton p_T , jet p_T , $\Delta \phi(e^\pm, \mu^\mp)$, $p_Z(e^\pm, \mu^\mp, j)$, $m(e^\pm, \mu^\mp, j)$ and $m_T(e^\pm, \mu^\mp, j)$.

Methodology


- The analysis is performed using the **complete 2016 dataset** (35.9 fb⁻¹).
- The **trigger strategy** uses a combination of single and double triggers to maximise efficiency.
- Event selection
 - At least two identified leptons.
 - One of them must fulfil $p_{T} > 25$ GeV, the other $p_{T} > 20$ GeV.
 - The two highest- p_T leptons must have opposite charge, be an electron and a muon (e μ channel), whose invariant mass satisfy m(e, μ) > 20 GeV.
 - Exactly one b-tagged jet ($p_T > 30$ GeV). -
 - Veto on the presence of loose jets (20 GeV $< p_{\tau} < 30$ GeV).
- Signal is extracted by subtracting background from data.
- Unfolding (implemented using TUnfold: JINST 7 (2012) T10003) is done to an equivalent fiducial region at particle level. The result is normalised to the fiducial cross section.

Results and discussion

- Agreement between data predictions (with the two generators, POWHEG and MADGRAPH5 aMC@NLO) is fairly good.
- dominated largely Analysis by uncertainties associated with the ttbar background.
 - Main sources: jet-related uncertainties (e.g. JES, JER) and modeling (e.g. ME/PS matching).
 - Depending on the bin and distribution, the effect of the uncertainties on the measured cross section varies from ~15-40% (bulk of distributions) up to \sim 25-100% in the tails.
- The result shows compatible agreement for the DR and DS schemes of the signal process.

 $\Delta \varphi(e^{\pm}, \mu^{\mp})/\pi$ (adim.)