

Inclusive t̄t production cross section at $\sqrt{s} = 5.02$ TeV in CMS

Alejandro Soto Rodríguez (on behalf of the CMS Collaboration)

LHCP 2021 7 of June

Introduction

- A measurement of the production cross section of $t\bar{t}$ at $\sqrt{s}=5.02$ TeV in pp collisions is presented <u>CMS-PAS-TOP-20-004</u>.
- The study of the production and properties of the top quark is one of the core elements of the LHC physics programme.
- Its main production mode at the LHC is by pairs ($t\bar{t}$).
- The precise determination of the production cross section is sensitive to the gluon PDF in the proton.
- The analysis is performed using data from 2017 corresponding to a luminosity of $304 \text{ pb}^{-1} \rightarrow \text{limited data sample size}$.
 - Only around 2 pileup interactions per bunch crossing.
- This result is combined with the measured cross section from the ℓ + jets channel based on 27.4 pb⁻¹ of data collected in 2015 at $\sqrt{s} = 5.02$ TeV <u>10.1007/JHEP03(2018)115</u>.

Methodology

- Trigger strategy: events passing at least one of the single lepton triggers with p_T thresholds of 12 (17) GeV in the case of muons (electrons).
- Object selection:
 - ► Electrons: $|\eta|$ < 2.5, p_T > 10 GeV.
 - \rightarrow Muons: $|\eta| < 2.4$, $p_T > 10$ GeV.
 - > Jets: $p_T > 25$ GeV and $|\eta| < 2.4$.

- Event selection:
 - $ightharpoonup e^{\pm}\mu^{\mp} + \geq 2$ jets final states.
- Leading lepton $p_T > 20$ GeV.
- Dilepton invariant mass above 20 GeV.
- Signal is extracted by a counting experiment subtracting background from data.
- Main backgrounds:
 - >tW, VV: estimated from simulation.
 - **DY**: estimated from data using $R_{out/in}$ method.
 - **Nonprompt** (W+jets, semileptonic $t\bar{t}$): estimated from simulation.

Results and discussion

2017 data: dilepton channel

Statistically limited

$$\sigma_{t\bar{t}} = 60.3 \pm (5.0 \text{ (stat)} \pm 2.8 \text{ (syst)} \pm 0.9 \text{(lumi) pb.}$$

2017 + 2015 data: dilepton $\oplus \ell$ + jets channel

$$\sigma_{t\bar{t}} = 62.6 \pm 4.1 \text{ (stat)} \pm 3.0 \text{ (syst+lumi)} \text{ pb.}$$

 $\sigma_{\mathsf{t}\bar{\mathsf{t}}} = \frac{N - N_{\mathsf{bkg}}}{\varepsilon \mathcal{ABL}}$

- Combination done using the best linear unbiased estimator (BLUE).
- Improvement from a total uncertainty of 13% from 10.1007/JHEP03(2018)115 to 7.9%.
- Agreement with the SM:

$$\sigma_{t\bar{t}}^{SM} = 66.8 \pm_{2.3}^{1.9} \text{ (scale)} \pm 1.7 \text{(PDF)} \pm_{1.3}^{1.4} (\alpha_S(m_Z)) \text{ pb.}$$

 Predicted at NNLO in QCD including soft-gluon resummation at NNLL.

Source	$\Delta \sigma_{\mathrm{t}ar{\mathrm{t}}}/\sigma_{\mathrm{t}ar{\mathrm{t}}}$ (%)
tW	1.0
Nonprompt leptons	0.4
Drell–Yan	1.8
VV	0.8
Trigger efficiency	1.3
L1 prefiring	1.4
Electron efficiency	1.6
Muon efficiency	0.6
JES	2.2
JER	1.2
μ_R , μ_F scales	0.2
$\mathrm{PDF} \oplus \alpha_S(m_{\mathbf{Z}})$	0.3
Final state radiation	1.1
Initial state radiation	< 0.1
h_{damp}	1.0
Underlying event tune	0.7
Total systematic	4.3
Integrated luminosity	1.5
Statistical uncertainty	8.2