For each object:

- **X-axis [4.5, 4.5]**: pseudorapidity

- **Y-axis [-\pi, \pi]**: azimuthal angle

Circle radius proportional to transverse momentum (non-linearly)

- Much more underlying information:
 - Angular distances between objects.
 - Closest objects probably share a common origin (same parent decay).

Q1: How to codify the information of particle collisions in images?

Search for Dark Matter

- Using a mono-top process as signal. The background consists of W+jets, ttbar, t-channel and Wt single top (the latter three merged).

Selection

- Exactly one lepton, at least one b-tagged jet and significant amount of MET.

Signal

- t-channel
- Single top
- W+jets

Q2: Could CNNs together with this image representation actually be used for event classification?

- Thus, the "feature extractor" of VGG16 was already trained using the ImageNet dataset and only the "classifier" part has been tuned with our samples.

VGG16 (transfer learning)

- Transfer learning is based on the idea that a good profit can be made of the power of a well-performing CNN with a previous training.

Deep CNN trained from scratch

- Based on AlexNet, this is one of the first deep learning approaches for CNNs with 16 layers.

- An A CNN with 11 layers has been built to train all its weights using our samples.

Q3: How well this technique (based on CNNs and images) performs in comparison to other techniques based on kinematic variables?

- CNNs (images)
- XGBoost (kin. variables)

We expect that CNNs can learn physics!!

- No previous feature study is required, since most important information is in the images and "the CNN decides where to see".

- This image representation makes the event information more intuitive also for humans.

- Unlimited creativity can be applied for including additional features to the images.

- Creating these images introduces an additional step in the analysis chain, which is not required when using other techniques.

Advantages

- Study the features that the CNNs are learning is quite tedious, but still possible looking into intermediate layers.

- Adding a new feature is not always as straightforward as adding a new "variable column".

Disadvantages

- This different shape in MET is learnt by the CNN.

- The similar performance to the BDT shows that the CNN is learning physics instead of irrelevant details of the images.

- Using transfer learning implies that not all the parameters will be trained.

References:

- Monte Carlo simulation samples from DarkMachines collaboration: https://www.phenomldata.org/
- Image representation based on previous study at IFCA: https://arxiv.org/abs/1708.07034
- VGG16: H. Ming and K. Xu. Surface Blemishes of Aluminium Material Image Recognition Based on Transfer Learning Journal of Physics: Conference Series, 1288:012016, 08 2019
Q1: How to codify the information of particle collisions in images?

For each object:
- X-axis [-4.5,4.5]: pseudorapidity
- Y-axis [-\(\pi\), \(\pi\)]: azimuthal angle
- Circle radius proportional to transverse momentum (non-linearly)

Despite different ways to represent a collision in an image can be imagined, this one is a very intuitive way in which every object corresponds to a coloured circle.

Much more underlying information:
- Angular distances between objects.
- Closest objects probably share a common origin (same parent decay).

Search for Dark Matter using a mono-top process as signal. The background consists of W+jets, ttbar, t-channel and Wt single top (the latter three merged).

Selection
- Exactly one lepton, at least one b-tagged jet and significant amount of MET.

Q2: Could CNNs together with this image representation actually be used for event classification?

Thus, the "feature extractor" of VGG16 was already trained using the ImageNet dataset and only the "classifier" part has been tuned with our samples.

VGG16 (transfer learning)
- Transfer learning is based on the idea that a good profit can be made of the power of a well-performing CNN with a previous training.
- Deep CNN trained from scratch based on AlexNet, this is one of the first deep learning approaches for CNNs with 16 layers.
- A CNN with 11 layers has been built to train all its weights using our samples.

Q3: How well this technique (based on CNNs and images) performs in comparison to other techniques based on kinematic variables?

We expect that CNNs can learn physics!! No previous feature study is required, since most important information is in the images and "the CNN decides where to see".

This image representation makes the event information more intuitive also for humans. Unlimited creativity can be applied for including additional features to the images.

Creating these images introduces an additional step in the analysis chain, which is not required when using other techniques.

Advantages
- Study the features that the CNNs are learning is quite tedious, but still possible looking into intermediate layers.
- Adding a new feature is not always as straightforward as adding a new "variable column".

Disadvantages
- Using transfer learning implies that not all the parameters will be trained.

Visual recognition is based on Convolutional Neural Networks (CNNs).

José Enrique García Navarro, María Moreno Llácer and Adrián Rubio Jiménez (speaker)

References:
- Monte Carlo simulation samples from DarkMachines collaboration: https://www.phenomldata.org/
- Image representation based on previous study at IFCA: https://arxiv.org/abs/1708.07034
- VGG16: H. Ming and K. Xu. Surface Blemishes of Aluminium Material Image Recognition Based on Transfer Learning Journal of Physics: Conference Series, 1288:012016, 08 2019
Q1: How to codify the information of particle collisions in images?

Q2: Could CNNs together with this image representation actually be used for event classification?

Q3: How well this technique (based on CNNs and images) performs in comparison to other techniques based on kinematic variables?

VGG16

- Transfer learning is based on the idea that a good profit can be made of the power of a well-performing CNN with a previous training.
- Based on AlexNet, this is one of the first deep learning approaches for CNNs with 16 layers.

<table>
<thead>
<tr>
<th>CNN</th>
<th>Number of layers</th>
<th>Total parameters (x10^6)</th>
<th>Trainable parameters (x10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG16</td>
<td>16</td>
<td>16,3</td>
<td>8,7</td>
</tr>
<tr>
<td>Deep CNN</td>
<td>11</td>
<td>2,5</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Transfer learning implies that not all the parameters will be trained.

- Thus, the “feature extractor” of VGG16 was already trained using the ImageNet dataset and only the “classifier” part has been tuned with our samples.

Deep CNN trained from scratch

- A CNN with 11 layers has been built to train all its weights using our samples.

- The similar performance to the BDT shows that the CNN is learning physics instead of irrelevant details of the images.

Advantages

- Study the features that the CNNs are learning is quite tedious, but still possible looking into intermediate layers.

Disadvantages

- Adding a new feature is not always as straightforward as adding a new “variable column”.

- Creating these images introduces an additional step in the analysis chain, which is not required when using other techniques.

References

- Monte Carlo simulation samples from DarkMachines collaboration: https://www.phenomldata.org/
- Image representation based on previous study at IFCA: https://arxiv.org/abs/1708.07034
- VGG16: H. Ming and K. Xu. Surface Blemishes of Aluminium Material Image Recognition Based on Transfer Learning Journal of Physics: Conference Series, 1288:012016, 08 2019
Q3: How well this technique (based on CNNs and images) performs in comparison to other techniques based on kinematic variables?

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>No previous feature study is required, since most important information is in the images and "the CNN decides where to see".</td>
<td>Creating these images introduces an additional step in the analysis chain, which is not required when using other techniques.</td>
</tr>
<tr>
<td>This image representation makes the event information more intuitive also for humans.</td>
<td>Study the features that the CNNs are learning is quite tedious, but still possible looking into intermediate layers.</td>
</tr>
<tr>
<td>Unlimited creativity can be applied for including additional features to the images.</td>
<td>Adding a new feature is not always as straightforward as adding a new "variable column".</td>
</tr>
</tbody>
</table>

The similar performance to the BDT shows that the CNN is learning physics instead of irrelevant details of the images.

This different shape in MET is learnt by the CNN.

The similar performance to the BDT shows that the CNN is learning physics instead of irrelevant details of the images.

References:
- Monte Carlo simulation samples from DarkMachines collaboration: https://www.phenomldata.org/
- Image representation based on previous study at IFCA: https://arxiv.org/abs/1708.07034
- VGG16: H. Ming and K. Xu. Surface Blemishes of Aluminium Material Image Recognition Based on Transfer Learning Journal of Physics: Conference Series, 1288:012016, 08 2019

Despite different ways to represent a collision in an image can be imagined, this one is a very intuitive way in which every object corresponds to a coloured circle. It looks so! And transfer learning seems to be a suitable option. Another example with more complex final states tt+X (X=tt,H,W) has also been studied.