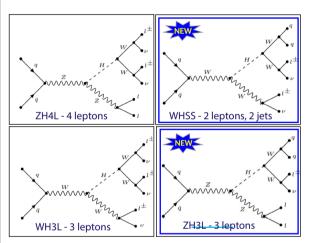
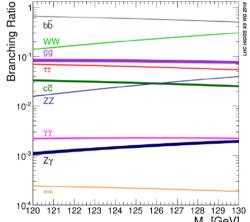


SM H→WW VH leptonic modes - Full Run 2

Sahithi Rudrabhatla, University of Illinois at Chicago


https://cds.cern.ch/record/2758367/ On behalf of the CMS Collaboration LHCP 2021



ABSTRACT

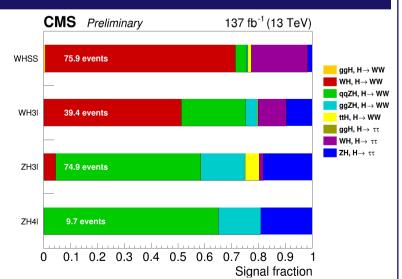
Recent measurements of the Higgs boson production cross section in the H->WW decay channel using proton-proton collision data with CMS experiment at 13 TeV will be presented. In particular the Higgs boson production in association with leptonically decaying vector bosons is targeted, and the H->WW decays in which at least one W boson decays to leptons are considered. Results for both the inclusive production cross section and cross sections in the STXS scheme will be presented

MOTIVATION AND INTRODUCTION

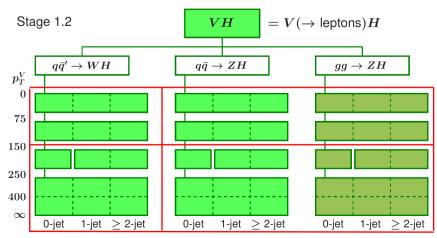
Large Higgs boson branching ratio to a W boson pair and direct handle on Higgs boson coupling to vector bosons makes this decay mode interesting.

The VH leptonic production cross section is measured in the WHSS, WH3I, ZH3I, and ZH4I decay channels. The four channels are differentiated by the number of leptons and jets in the final state

Simplified Template Cross Sections (STXS)


Motivation:

Maximize the sensitivity of the measurements to kinematics and minimize dependence on theoretical uncertainties.


Signal strength measurement:

Signal is divided into bins of true vector boson $p_{_{\! T}}$ and data is divided into bins of reconstructed $p_{_{\! T}}$. Signal strengths in each true $p_{_{\! T}}$ bin is extracted in simultaneous fit to reconstructed $p_{_{\! T}}$ bins.

SIGNAL COMPOSITION

SIMPLIFIED TEMPLATE CROSS SECTIONS (STXS)

Definition of p^V_T

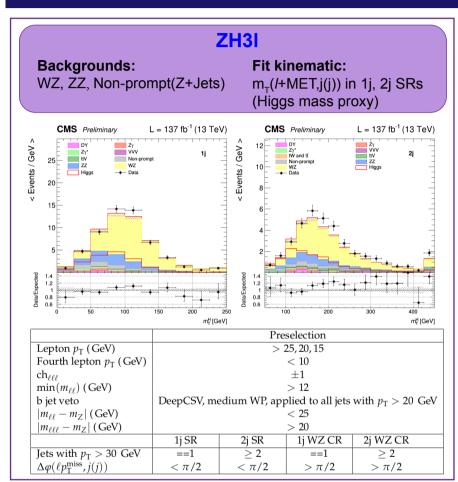
WHSS:
$$p_T^W = p_T(l_W) + p_T(v_W)$$

$$= p_T(l_W) + E_T^{miss} - p_T(v_H)$$

$$p_T(v_H) = p_T(l_H) * (\frac{125}{||p_T(l_H) + p_T(jj)||} - 1)$$

WH3L: $p_T(l_W)$ is used as a proxy for W p_T

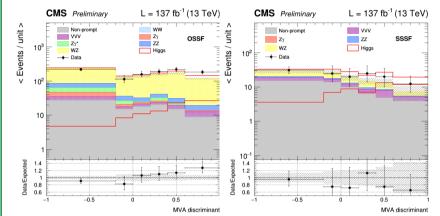
ZH3L, **ZH4L**: p_T of OSSF lepton pair is used as Z p_T ; $m_{ll} \sim m_z$


SM H→WW VH leptonic modes - Full Run 2

Sahithi Rudrabhatla, University of Illinois at Chicago

https://cds.cern.ch/record/2758367/ On behalf of the CMS Collaboration LHCP 2021

BASELINE SELECTION AND ANALYSIS STRATEGY


WH3I

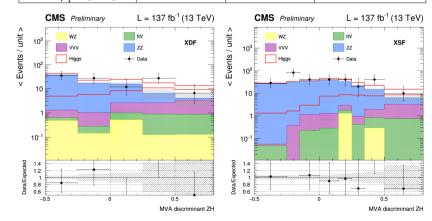
Backgrounds:

Non-prompt(Z+Jets,top) WZ, ZZ, Vγ Fit kinematic:

BDT discriminant in OSSF and SSSF regions

	Preselection			
Lepton $p_{\rm T}$ (GeV)	> 25, 20, 15			
Fourth lepton $p_{\rm T}$ (GeV)	< 10			
$ch_{\ell\ell\ell}$	±1			
$\min(m_{\ell\ell})$ (GeV)	> 12			
Jets with $p_{\rm T} > 30$ GeV	0			
B jet veto	DeepCSV, loose WP, applied to all jets with $p_T > 20$ GeV			
	OSSF SR	SSSF SR	WZ CR	$Z\gamma$ CR
OSSF lepton pair	Yes	No	Yes	Yes
$ m_{\ell\ell} - m_Z $ (GeV)	> 20		< 20	< 20
$p_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	> 40		> 45	< 40
$m_{\ell\ell\ell}$ (GeV)			> 100	[80, 100]

Backgrounds: ZZ

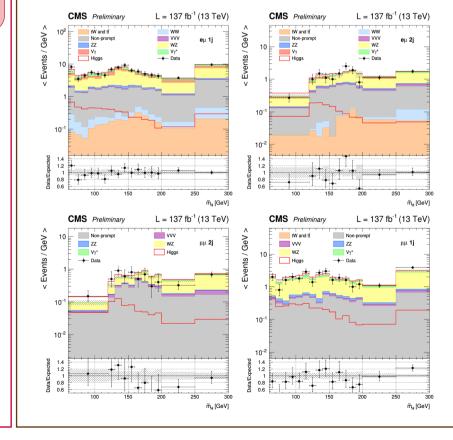

ZH4L

Fit kinematic:

BDT discriminant in XSF,

XDF regions

	Preselection			
Lepton p _T (GeV)	> 25, 15, 10, 10			
Fifth lepton $p_{\rm T}$ (GeV)	< 10			
$ch_{\ell\ell\ell\ell}$	0			
$\min(m_{\ell\ell})$ (GeV)	< 12			
$ m_{\ell\ell}^Z - m_Z $ (GeV)	< 15			
B jet veto	DeepCSV, loose WP, applied to all jets with $p_T > 20$ GeV			
	XSF SR	XDF SR	ZZ CR	
X pair flavor	Same	Different		
$m_{\ell\ell\ell\ell}$ (GeV)	> 140			
$m_{\ell\ell}^{X}$ (GeV)	[10,60]	[10,70]	[75,105]	
PÜPPI $p_{\rm T}^{\rm miss}$ (GeV)	> 35	> 20	< 35	
0110	1 407 %-1 (40 T-10	0110	1 407 %:1 (40 T-) 0	


WHSS

Backgrounds:

Non-prompt(W+Jets) V_γ, V_γ* Fit kinematic:

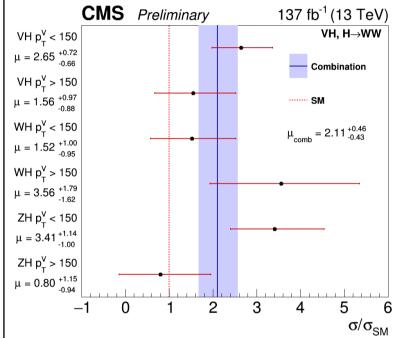
mll20_whss in all regions (Higgs mass proxy)

	Preselection			
Lepton $p_{\rm T}$ (GeV)	> 25,20			
Third lepton veto	Yes			
$m_{\ell\ell}$ (GeV)	> 12			
$\Delta \eta_{\ell\ell}$	< 2.0			
B jet veto	DeepCSV, medium WP, applied to all jets with $p_T > 20$ GeV			
$p_{\rm T}^{\rm miss}$ (GeV)	> 30			
\tilde{m}_H (GeV)	> 50			
	1j eμ SR	2j eμ SR	1j μμ SR	2j μμ SR ≥ 2
Jets with $p_{\rm T} > 30$ GeV	==1	≥ 2	==1	≥ 2
m_{ii} (GeV)		< 100		< 100
$ m_{gg} - m_{Z} $ (GeV)			> 15	> 15

SM H→WW VH leptonic modes - Full Run 2

Sahithi Rudrabhatla, University of Illinois at Chicago

https://cds.cern.ch/record/2758367/ On behalf of the CMS Collaboration LHCP 2021


INCLUSIVE RESULTS

CMS Preliminary 137 fb⁻¹ (13 TeV) WHSS $\mu = 0.95^{+0.94}_{-0.96}$ WH3I $\mu = 2.20^{+0.86}_{-0.79}$ ZH3I $\mu = 4.12^{+1.73}_{-1.68}$ ZH4I $\mu = 1.73^{+0.75}_{-0.65}$ -1 0 1 2 3 4 5 6 σ/σ_{SM}

Category	μ	Significance
WHSS	$0.95^{+0.94}_{-0.96}$	$1.0 \sigma (1.1 \sigma \text{ expected})$
WH31	$2.20^{+0.86}_{-0.79}$	$3.0 \sigma (1.6 \sigma \text{ expected})$
ZH31	$4.12^{+1.73}_{-1.68}$	2.5σ (0.6 σ expected)
ZH4l	$4.12_{-1.68}^{+1.73} \\ 1.73_{-0.65}^{+0.75}$	3.1σ (2.1 σ expected)
Combination	$1.85^{+0.47}_{-0.44}$	4.7σ (2.8 σ expected)

(Upper) Comparison of the combined and individual signal strengths **(Lower)** The posterior signal strengths and significances for the signal strengths for each of the channels and the combination.

STXS RESULTS

	μ	Significance
$WH p_{\mathrm{T}}^{\mathrm{V}} < 150 \text{ GeV}$	$1.5^{+1.0}_{-0.9}$	1.64σ (1.24 σ expected)
$WH p_{\rm T}^{\rm V} > 150 \text{ GeV}$	$3.6^{+1.8}_{-1.6}$	2.23 σ (0.83 σ expected)
$ZH p_{\mathrm{T}}^{\mathrm{V}} < 150 \; \mathrm{GeV}$	$3.4^{+1.1}_{-1.0}$	$4.37 \sigma (1.59 \sigma \text{ expected})$
$ZH p_{\mathrm{T}}^{\mathrm{V}} > 150 \text{ GeV}$	$0.8^{+1.2}_{-0.9}$	0.83σ (1.18 σ expected)

(Upper) Comparison of the combined and individual signal strengths **(Lower)** The posterior signal strengths and significances for the signal strengths in each bin

REFERENCES

https://cds.cern.ch/record/2758367/files/HIG-19-017-pas.pdf

SYSTEMATIC UNCERTAINTIES

Type	Source	Impact (%)
	Renormalization and factorization scale	3
Theoretical	Parton distribution function	2
	Parton shower, underlying event	2
	Nonprompt	9
	Sample size of simulation data	8
	Electron	3
	b tag	3
Experimental	Jet	2
	Luminosity	2
	WZ normalization	2
	$Z\gamma$ normalization	2
	ZZ normalization	1
	Muon	1

Impacts of sources of systematic uncertainty on signal strength

SUMMARY

The cross sections for Higgs boson production in association with a leptonically decaying vector boson have been measured in events where the Higgs decays to a pair of W bosons. The measurements have been performed with pp collision data sets recorded by the CMS detector at a center-of-mass energy of 13 TeV in 2016, 2017, and 2018, corresponding to a total integrated luminosity of 137 fb-1.

In addition to the inclusive measurement, the cross section for VH production was measured with respect to the transverse momentum of the associated vector boson, following the simplified template cross sections framework. The cross sections are extracted through a simultaneous template fit to kinematic distributions of the signal candidate events finely categorized to maximize the sensitivity to Higgs boson production. The observed significance of the inclusive VH production cross section is 4.7σ , while the observed significance of the VH production cross section for $p_{\perp}^{V} < 150(> 150)$ is $4.7\sigma(1.8\sigma)$.