Physics potential and track reconstruction of the FASER experiment

Tobias Böckh on behalf of the **FASER Collaboration** LHCP 2021, 7 - 12 June 2021

What is FASER?

- ForwArd Search ExpeRiment [1]
- new, small experiment to search for New Physics and observe Neutrinos
- currently constructed, data taking during Run 3

Goal

 detect simple striking signal: new particle decaying in two SM particles

Signature

 $pp \rightarrow NP + X$, NP travels ~480 m, NP \rightarrow tracks + X

Location

- on beam collision axis line of sight,
 480 m downstream from ATLAS IP
- in TI12 tunnel

- high rate of hadrons in forward direction
- low background (shielding + deflection)

Forward physics

particles

hidden corners at the LHC

interacting particles

Physics potential

• example: dark photon

further interesting channels [3]

m_{A'} [GeV]

- heavy neutral leptons
- axion like particles

Detector

Calorimeter

- 4 outer ECAL modules
- donated by LHCb Collaboration!
- 66 layers of lead and scintillator

Magnets

- 3 x 0.55 T permanent dipole magnets
- to separate highly collimated tracks

Geometry

- 5m length
- 20cm aperture
- 1.5m decay volume

Scintillators

• for veto of incoming charged particles, timing and triggering

Incoming LLF

Tracking stations

- 3 stations, each containing 3 layers of
 8 semiconductor strip tracker (SCT) modules
- SCT modules donated by ATLAS Collaboration!

Neutrino detector

- 770 layers of emulsion film and tungsten
- emulsion replaced every ~50 fb⁻¹

For details on the commissioning see poster by S. Shively

To ATLAS IP

Track Reconstruction

Cluster → Space points → Track Seeds → Tracks

create clusters from

semiconductor strips

combine clusters

to a space point

from front and back

create track seeds from linear χ^2 fit

use combinatorial Kalman filter for track finding and fitting

Offline framework

based on Athena and ACTS [5]

Track seeds

 linear X² fit of cluster in each station

References

- [1] https://arxiv.org/abs/1811.10243
- [2] https://www.symmetrymagazine.org/article/a-tiny-newexperiment-at-the-lhc
- [3] https://arxiv.org/abs/1811.12522
- [4] https://arxiv.org/abs/2105.06197
- [5] https://arxiv.org/abs/1910.03128

Alignment

	, 3	
mean in μ m	-34.0 ± 35.2	-2.3 ± 5.8
sigma in μ m	27.6 ± 7.0	26.3 ± 5.4

Track fitting

- · tested with MC simulated muons
- smeared truth initial parameters

