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Goals and Motivation

Standard BSM search techniques heavily rely on specific theory models. Rather
than exploring all possible BSM models, maybe this could be done in a model
independent way.

Unsupervised Anomaly Detection:
Makes minimal assumptions on the signal model (that it’s quantifiably
different from the background)
Only requires background data for training and it is sensitive to low amounts
of signal

BSM Search Strategy:
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Machine Learning Anomaly Detection

Autoencoders (AE)

I Inputs are reconstructed from a learned
lower-dimensional representation

I Trained to minimize reconstruction error

I High reconstruction error ⇒ anomalous
events

Normalizing Flows (NF)

I This model attempts to learn the probability density function of the data

I It uses a chain of triangular maps to create a bijection between the data
space and a same-dimensional normal distribution

bγ → Triangular Map Chain bγ(~x) = ~u

~x→ Target Distribution ~u→ Gaussian Distribution

Jγ → Jacobian of Map Chain p(~x) = p(~u) det |Jγ|−1

Probabilistic Autoencoder [1]

Combining Autoencoders and
Normalizing Flows

I Train a NF model on the latent
space of an AE

I The likelihood of the inputs
approximates to:

ln p(~x) ≈ −1
2
||~x− ~x′||2~σ◦−2 − 1

2
bγ(~z)

2 + ln | detJγ|

~σ → average validation reconstruction error
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LHC Olympics Challenge Data [2]

Data Format: 4-vector particle flow information of multijet events simulated with
Pythia and Delphes.
Feature Extraction: Jet kinematics, substructure variables or any other ob-
servables need to be computed and extracted by applying clustering algorithms
Datasets:
I RnD dataset: QCD background (1M), dijet signal (100k) and trijet signal (100k)

I Background-only training set (1M)
I 3 different black-boxes with potential signal (1M each)
I BB1 : 3.8 TeV Z’ decaying in dijet with 834 signal event
I BB2 : QCD background only
I BB3 : 4.2 gKK decaying in dijet and trijet (BR trijet = 0.625)

Note: background is modeled differently across all datasets

Results

Bias Mitigation Strategies

I Input feature uniformization
I Sample weights based on mjj

density.

F Mass sculpting quantification:
 Jensen-Shannon Divergence between
test data and events passing the cut

F Models trained on QCD background data and tested on RnD dataset
⇒ Data-driven background model

Performance Summary

logpx: NF likelihood of inputs

logpz: NF likelihood of latent
representation

MSE: AE reconstruction error

MSE·σ◦−2: MSE normalized to
average validation reconstruction error

PAE: approximation of input
likelihood with PAE
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F NF likelihoods show good discrimination
but are the most biased

F Reconstruction error score compromises
some performance for less bias

⇒ Combining the two scores results in good
performance and reduced bias

Black Box 1 Dataset F Pae fitted on Background-only training set

Z ′→ X, Y
mZ ′ = 3.8TeV
mX = 732GeV mY = 378GeV
834/1M signal events

Bump hunting [3] results

mean : 3866.7GeV
width : 160GeV
number of signal events : 118�

�

�

�
signal bump significance � 5σ

Conclusions

Autoencoder and Normalizing Flow neural networks tested on LHC Olympics
Data for anomaly detection. Combining the two networks:

⇒ Probabilistic Autoencoder ensemble → successful unsupervised anomaly
detection application to jet physics:
F Sensitive to very low signal fractions

F Low bias when using Mitigation Strategies

F Allows for successful Bump Hunting on LHCO Black Box 1

Future outlook: I performance studies on 3-prong signals
I readjust method for jet images inputs
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