

Precision Timing with the CMS MTD Barrel Timing Layer for HIL-LHC

Badder Marzocchi on behalf of the CMS Collaboration, Northeastern University (Boston, US)

- High Luminosity LHC (HL-LHC)
 - → Maximum luminosity of 2×10³⁵ cm⁻² s⁻¹
 - → Average pile up: 140 (maximum 200)
- O Timing information of the tracks can be exploited
 - → Reduce the impact of pile up on objects reconstruction and identification
 - \rightarrow Mip Timing Detector (MTD): $\sigma_t \sim \!\! 30$ ps (50-60 ps by the end of HL-LHC operations)

o MTD Barrel Timing Layer [1]

- → LYSO:Ce bars + SiPM readout + TOFHIR ASICs front-end
- → Operated at -30°C to reduce the dark current, induced by radiation
- → Tracker/ECAL interface:
 - $\sim 40 \text{ mm thick}, \sim 38 \text{ m}^2$
- → Mounted on the inner surface of the Tracker Support Tube
- → 72 trays with 332k channels

• Study LYSO+SiPMs performance at Test Beam

- → 120 GeV protons
- → Scintillator (trigger) + Silicon tracker (beam tracking) + LYSO bars (with unirradiated SiPMs) + MCP-PMT (reference)
- → Customized electronic boards used to apply the bias voltage and perform the readout of the SiPMs

• Test various crystal dimensions and SiPIMs manifactures

- \rightarrow 3x2x57 mm³, 3x3x57 mm³ and 3x4x57 mm³ crystals
- → Hamamatsu (HPK) and Fondazione Bruno Kessler (FBK) SiPMs

Measure time resolution for various configurations

- → As a function of the MIIP impact point and angle
- → As a function of the most probable value (MPV) of the signal amplitude
- Target time resolution for MTD with unirradiated SiPMs achieved: $\sigma_t \sim 30 \text{ ps}$

