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About GeNIALE

• Geant4 Nuclear Interaction At Low Energy 

• Granted by the INFN  
National Scientific Committee 5 (CSN5) 
for two years 

• CSN5 is devoted to technological and 
inter-disciplinary research 

• and by Sapienza for 1 year
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BLOB and Geant4

• We interfaced 
BLOB with Geant4 
and its  
de-excitation model 

• obtaining promising 
results 

• the BLOB 
computation time is 
too large for any 
medical application
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Embarrassing parallelizable?
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• BUU and BL explore the time 
evolution of the density 
distribution with test particles 

• 100 test particles per 
nucleon 

• At each step the mean field 
potential is calculated 

• The test particle can interact 
only with elastic scattering 

• Many test particles 

• All the same 

• Only one possible 
interaction 

Low thread divergency



ANIMA

• Accelerate the computation of a Nuclear Interaction 
model for Medical Applications  

• Proposed as a Marie-Curie Global Fellow in 2018 

• 2 years at SLAC and 1 at INFN 

• To port BLOB on GPU
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ANIMA

• Accelerate the computation of a Nuclear Interaction 
model for Medical Applications  

• Proposed as a Marie-Curie Global Fellow 

• 2 years at SLAC and 1 at INFN 

• To port BLOB on GPU 

• Support by NVIDIA 

• Not granted but obtained the “Seal of Excellence”
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BLOB (Boltzmann-Lagevein One Body)

• describes the time 
evolution of the density 
distribution  

• involves the 
implementation of an 
effective attractive mean-
field nuclear interaction 

• mean-field is self-
consistent, depends on 
the density
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BLOB (Boltzmann-Lagevein One Body)
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• it uses the test particles 
approach 

• 500 test particles per 
nucleon in this simulation 

• two body interactions are 
explicitly treated as test 
particles collisions
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BLOB (Boltzmann-Lagevein One Body)
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• the final state is a 
distribution probability of 
finding a nucleon in a 
position of the phase 
space 

• from which the physical 
state has to be sampled
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Variational Auto Encoders

Encoder
Latent space

Decoder
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• Train an identity function



Variational Auto Encoders

Encoder Decoder
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• Use the decoder to produce artificial images

Latent space



Conditioning to b

• Taking inspiration from: 
 
 

• VAE for generating new chemical 
compounds with properties that are 
of interest for drug discovery  

• To organise latent space w.r.t 
chemical properties they jointly 
trained the VAE with a predictor 

• It predicts these properties from 
latent space representations

[Automatic chemical design using a data-driven 
continuous representation of molecules, 

Gómez-Bombarelli at al. arXiv:1610.02415]
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Conditional VAE

• Convolutional 3D encoding 

• Conditioned latent space 

• Symmetric decoding
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Training dataset

• The BLOB final state is a list with the position in the phase 
space of fragments and gas particles 

• Fragments: A and Z (real), P, Q and Excitation energy 

• Gas particles: Z, P and Q. Each represent a 1/500 probability 
of having a nucleon in that position of phase space 

• 2000 events 

• Generated with uniform impact parameter 

• 1500 of them for training and 500 for testing
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Reducing dimensionality

• To reduce the dimensionality and use the 
Keras 3D kernels 

• We consider only: 

• The modulus of the momentum 

• its angle with the collision axis 

• The distance of each test particle with 
the fragment center 

• We divided the test particles in three 
samples (one for each possible large 
fragment): 

• To use the color channels
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Reducing dimensionality

• Fragments are represented by 
500*A particles 

• P is sampled with gaussian 
distribution: 

• mean = Pfrag  

• sigma = Excitation energy 

• All with the same q 

• r = 0
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Testing 
reconstruction

• Fragments are 
identified selecting  
r<1 fm 

• Momentum = average 

• Excitation energy = 
variance 

• q = average
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Latent space
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• 600 epochs of training 

• Events with similar 
impact parameters are 
close in latent space 

• Especially the events 
with very large impact 
parameters
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Output distributions

• The generated distributions (red) 
looks similar to the input  (blue) 

• The generated event has been 
generated from the same 
position in latent space of the 
input 

• Input from training dataset
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Preliminary results

• A paper with preliminary 
results has been 
submitted to Physica 
Medica 

• “Preliminary results in 
using Deep Learning to 
emulate BLOB, a nuclear 
interaction model” 

• We just submitted the 
revised version

Preliminary results in using Deep Learning to emulate BLOB, a nuclear interaction model

A. Ciardielloa,b, M. Asaic, B. Cacciad, G. A. P. Cirronee, M. Colonnae, A. Dottic, R. Faccinia,b,
S. Giagua,b, A. Messinaa,b, P. Napolitanif, L. Pandolae, D. H. Wrightc, C. Mancini-Terraccianoa,b

aDip. Fisica, Sapienza Univ. di Roma, Rome, Italy
bINFN Sezione di Roma, Rome, Italy

cSLAC National Accelerator Laboratory, Menlo Park, United States
dNational Center for Radiation Protection and Computational Physics,

Istituto Superiore di Sanità, Italy
eINFN, Laboratori Nazionali del Sud, Catania, Italy

fIPN, CNRS/IN2P3, Université Paris-Sud 11, Université Paris-Saclay, 91406 Orsay Cedex, France

Abstract

Purpose: A reliable model to simulate nuclear interactions is fundamental for Ion-therapy. We already showed how BLOB
(“Boltzmann-Langevin One Body”), a model developed to simulate heavy ion interactions up to few hundreds of MeV/u, could
simulate also 12C reactions in the same energy domain. However, its computation time is too long for any medical application. For
this reason we present the possibility of emulating it with a Deep Learning algorithm.

Methods: The BLOB final state is a Probability Density Function (PDF) of finding a nucleon in a position of the phase space.
We discretised this PDF and trained a Variational Auto-Encoder (VAE) to reproduce such a discrete PDF. As a proof of concept, we
developed and trained a VAE to emulate BLOB in simulating the interactions of 12C with 12C at 62 MeV/u. To have more control
on the generation, we forced the VAE latent space to be organised with respect to the impact parameter (b) training a classifier of b
jointly with the VAE.

Results: The distributions obtained from the VAE are similar to the input ones and the computation time needed to use the VAE
as a generator is negligible.

Conclusions: We show that it is possible to use a Deep Learning approach to emulate a model developed to simulate nuclear
reactions in the energy range of interest for Ion-therapy. We foresee the implementation of the generation part in C++ and to
interface it with the most used Monte Carlo toolkit: Geant4.

Keywords: Monte Carlo simulations, Deep Learning, Nuclear reactions, Ion-therapy, Hadron-therapy,

1. Introduction

Ion-therapy is a technique that aims at treating tumour deeply
located in the patient body exploiting the ions characteristic
dose deposition shape, with the peak at the end of their range,
the so-called Bragg peak. It is performed mainly with protons
but also with heavier ions, like 12C.

Having reliable nuclear fragmentation models in MC simu-
lation toolkits is of utmost importance for Ion-therapy [1] as
they are considered the gold standard for dosimetric calcula-
tions [2]; they are used to generate the input parameters of the
treatment planning algorithms [3] and to validate the dose cal-
culation of such algorithms, especially in cases with large tissue
heterogeneities [4]. Finally, a large e↵ort is ongoing to develop
detectors to measure the radiation emitted during the treatment
to allow a non-invasive on-line monitoring of the treatment it-
self, see for instance [5–8], and MC calculations are needed to
infer the delivered dose from the observed spectra [9, 10]

Geant4 [11] is one of the most widely used MC toolkits, also
for medical applications. It is written in C++ and takes ad-

Email address: carlo.mancini.terracciano@roma1.infn.it
(C. Mancini-Terracciano)

vantage of its object-oriented coding paradigm. Geant4 also
exploits the multithread capabilities of C++11, allowing an ef-
ficient use of modern CPUs. It is developed by a large inter-
national collaboration and distributed with an open source li-
cence, which allows also to develop wrappers around it. In
the last years many programs dedicated to MC medical sim-
ulations have been developed wrapping Geant4, and then us-
ing its Physics models, such as GATE [12], GAMOS [13], and
TOPAS [14]. The latter in particular is dedicated to Ion-therapy
simulations.

Finally, Geant4 has the capability to simulate the body of a
specific patient importing his Computed Tomography (CT) scan
in DICOM format [15].

Many critical aspects must be taken into account when mod-
elling the therapeutic ion beams, e.g. although elastic and mul-
tiple Coulomb scattering events are negligible for charged parti-
cles, they contribute to dosimetric uncertainty especially in on-
cological applications, because they cause beam widening [16].
However, one of the main uncertainties comes from nuclear
interaction models. Moreover, while there are several models
for electromagnetic interactions in the Geant4 package [17–19],
there is no dedicated model to describe inelastic nuclear reac-

Preprint submitted to Physica Medica March 14, 2020
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