

Heat Capacity, Statistics and a bit of Analysis for ECHo

HighRR 2020 Clemens Velte

status quo

status quo

kinematic approach (model independent)

• m(v_e): < 1.1 eV 90% C.L.

G. Huang et al., Phys. Rev. D 101, 016003 (2020)

m(ν_e): < 225 eV 95% C.L.
P. T. Springer et al., Phys. Rev. A 35, 679 (1987)

Electron capture in ¹⁶³Ho

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

• T_{1/2} ≈ 4570 years (2*10¹¹ atoms for 1 Bq)

• Q_{EC} = (2.833 ∓ 0.030^{stat} ∓ 0.015^{syst}) keV S. Eliseev et al., Phys. Rev. Lett., 115, 062501 (2015)

Electron capture in ¹⁶³Ho

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

Calorimetric measurement

A. De Rujula and M. Lusignoli Phys. Lett. 118 B (1982) 118

• Q_{EC} = (2.833 ∓ 0.030^{stat} ∓ 0.015^{syst}) keV S. Eliseev et al., Phys. Rev. Lett., 115, 062501 (2015)

 4π encapsulation

Electron capture in ¹⁶³Ho

Requirements for sub-eV sensitivity in ECHo

Statistics in the end point region

- $N_{ev} > 10^{14} \rightarrow A \approx 1 MBq$
- Unresolved pile-up ($f_{pu} = a \bullet \tau_r$)
- *f*_{pu} ≤ 10⁻⁶
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \, \text{Bq}$
- 10⁵ pixels \rightarrow multiplexing

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Background level

< 10⁻⁵ events/eV/det/day

Metallic magnetic calorimeters (MMCs)

Gradiometric MMCs

Heat Capacity

 $\Delta E_{\text{FWHM}} < 3 \text{ eV}$ a ~ 10 Bq

 $\Delta E_{FWHM} \propto \sqrt{C_{tot}}$

 $C_{_{_{Ho}}}(1Bq) = ?$

HC setup

ECHo-1k detector chip

Pulse height for ⁵⁵Fe

HC due to ¹⁶³Ho

Heat capacity of ¹⁶³Ho

Heat capacity of ¹⁶³Ho

→ 10 Bq @ 20 mK 40% higher C_{tot}

$$\Delta E_{FWHM} \propto \sqrt{C_{tot}}$$

 \rightarrow 10 Bq are no problem

arXiv:1912.09354 [cond-mat.mtrl-sci]

Statistics & Analysis

Modane

4 pixels, 4 days

275 000 events

clean ¹⁶³Ho source

Fitting pulses

A nice and clean ¹⁶³Ho spectrum

Background

Spectrum

 $N_{ev} > 10^{14}$

 $BG < 10^{-5}$ events/pixel/eV/day

 $BG < 2 \times 10^{-5}$ events/pixel/eV/day

 $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

 $\Delta E_{\text{FWHM}} = 9 \text{ eV}$

 $Q_{\rm EC}$ = (2.833 \mp 0.030^{stat} \mp 0.015^{syst}) keV $Q_{\rm EC}$ = (2.838 \pm 0.014) keV

Comparison with theory

Comparison with theory

Eur. Phys. J. C 79: 1026 (2019)

Statistics & Analysis

ECHo-1k chip

23 pixels, 22 days

 3×10^7 events

High statistic ¹⁶³Ho spectrum

 $N_{ev} > 10^{14}$

$$N_{ev} = 3 \times 10^7$$

BG < 10⁻⁵ events/pixel/eV/day

 $BG < 1 \times 10^{-6}$ events/pixel/eV/day

$$\Delta E_{\rm FWHM} < 3 \, {\rm eV}$$

$$\Delta E_{\text{FWHM}} = 6.6 \text{ eV}$$

¹⁶³Ho spectrum

Comparison with theory

• $Q_{EC} = (2.833 \mp 0.030^{stat} \mp 0.015^{syst}) \text{ keV}$

arXiv:2002.05989 [nucl-th]

p-value

theories

Neutrino mass

Conclusion

HC: specific heat per ¹⁶³Ho-ion = 0.05 k_B at T = 20 mK \rightarrow a = 10Bq is allowed

ECHo-1k Chip: more statistics give new input to theory best achieved energy resolution with ¹⁶³ Ho at that time

and much more ...

