Physikalisches Institut, Heidelberg University

Pixel Size study of HV-MAPS using TCAD Simulations

Annie Meneses Gonzalez HighRR Seminar 8.07.2020

Bundesministerium für Bildung und Forschung

Pixel Detectors

Pixel detectors for particle tracking have resulted resulted in modules which stand

- High rates
- 2 Timing requirements
- 3 Very harsh radiation environment

Current pixel detector technologies:

• Hybrid (passive sensor bump-bonded to an active read-out chip)

Disadvantages:

- High cost
- Large amounts of material

 → disqualify it for tracking low
 momentum particles

Pixel Detectors

Current pixel detector technologies:

- Hybrid (passive sensor bump-bonded to an active read-out chip)
- Monolithic (such as the MIMOSA detectors)

Disadvantages:

Collect charges via diffusion
 → Slow for high rate applications

Pixel Detectors

Current pixel detector technologies:

- Hybrid (passive sensor bump-bonded to an active read-out chip)
- Monolithic (such as the MIMOSA detectors)
- High Voltage Monolithic Active Pixel Sensors (HV-MAPS)
 - □ Integrated readout electronic and sensor (low material budget)
 - □ Implemented in a commercial CMOS process (cheaper than hybrid sensors)
 - \square Depletion area ~ 15 μm at -60V for 20 Ωcm
 - □ Fast charge collection via drift (~ ns)

I. Peric /A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology, NIM A 2007

HV-MAPS Application

\rightarrow The Mu3e Pixel Tracker

The goal of the Mu3e experiment is to search for the lepton flavour violating decay $\mu^+ \rightarrow e^+e^-e^+$ with an ultimate sensitivity of one in 10¹⁶ μ -decays

- Energies of the decay particles up to half the muon mass (53 MeV)
- Excellent momentum resolution (background $\mu \rightarrow eee \upsilon \upsilon$)
- Multiple Coulomb scattering affects momentum resolution
- Low material budget
- High Rate of muons decays

Technology Computer Aided Design

Use of computer simulations to develop and optimize semiconductor processing technologies and devices.

Why TCAD?

- Fabrication process and electrical behavior.
- Tiny and complex structures in 2D and 3D.
- Save time and money.
- Complement to laboratory measurements.
- Estimates and optimizes properties of the sensor as
 - Breakdown Voltage
 - **Deplection zone**
 - Charge collection time
 - Pixel Capacitance
 - Electric Field

HighRR Seminar 8.07.2020

TCAD Process Flow

• Structure Simulation (Device structure and doping profiles)


```
*Layout of MuPix8
```

- Device Simulation (Physical models: temperature, mobility, recombination, avalanche, radiation damage)
 - Quasistationary (Breakdown Voltage, Capacitance, Electric Field)
 - Transient Simulation of Minimum Ionizing Particle (MIP) (Charge collection process)

pn-junction

 \rightarrow Reversely biased pn-junction is the building block of HV-MAPS structures

Why?

- Intrinsic silicon substrate
 - $\sim 10^9$ free charge carriers
 - $\sim 10^4$ induced by ionizing particles
- pn-junction reduces the number of free charge carriers by depleting the silicon volume

- Intrinsic silicon: Absence of impurities
- Doping: Mechanism to alter conductivity (inserting additional states in the forbidden region)
 - \rightarrow n-doped: phosphorus, excess of electrons \rightarrow p-doped: boron, excess oh holes

 \rightarrow Reversely biased pn-junction is the building block of HV-MAPS structures

- Structures created using doping profiles (Gaussian)
- p-doped substrate
- Highly doped n-implant (~10¹⁶)
- Width of depletion area:

$$W \approx \sqrt{\frac{2 * \epsilon_0 * \epsilon_{Si} * V}{e * N_D}}$$

 $N_D \rightarrow$ Concentration of donors

 \rightarrow Reversely biased pn-junction is the building block of HV-MAPS structures

- Structures created using doping profiles (Gaussian)
- p-doped substrate Highly doped n-implant ($\sim 10^{16}$)
 - Width of depletion area:

$$W \approx \sqrt{\frac{2 * \epsilon_0 * \epsilon_{Si} * V}{e * N_D}}$$

 $N_D \rightarrow$ Concentration of donors

 \rightarrow Depletion zone:

Region depleted from free charge carriers

- \rightarrow Reversely biased pn-junction is the building block of HV-MAPS structures
- Structures created using doping profiles (Gaussian)
- p-doping substrate
- Highly doped n-implant (~10¹⁶)
- Width of depletion area:

$$W \approx \sqrt{\frac{2 * \epsilon_0 * \epsilon_{Si} * V}{e * N_D}}$$

 $N_D \rightarrow$ Concentration of donors

 \rightarrow Depletion zone:

- □ Region depleted from free charge carriers
- Electrically charged

 \rightarrow Reversely biased pn-junction is the building block of HV-MAPS structures

- Structures created using doping profiles (Gaussian) ⁶
- p-doping substrate
- Highly doped n-implant (~10¹⁶)
- Width of depletion area:

$$W \approx \sqrt{\frac{2 * \epsilon_0 * \epsilon_{Si} * V}{e * N_D}}$$

 $N_D \rightarrow$ Concentration of donors

 \rightarrow Depletion zone:

□ Electrically charged

Electric Field that collects the signal charge and suppresses the leakage current

13/30 Annie Meneses Gonzalez

HighRR Seminar 8.07.2020

Substrate resistivity

Electric Field

• Depletion depth

- Depletion depth
 - Higher resistivity → Thicker depletion zone (Larger sensitive area)
- **2** Electric Field
 - Lower resistivity \rightarrow Higher Electric Field (Faster charge collection)

Substrate resistivity

• Lateral depletion

• Higher resistivity → Larger lateral depletion (Higher efficiency and faster collection charge in the area between pixels)

• Depletion depth (just p-region)

 $a = 1.302 * 10^{-8} * r^{2} + 4.4520 * 10^{-6} * r + 4.766 * 10^{-5}$

 $a = -1.292 * 10^{-10} * r^2 - 1.645 * 10^{-7} * r - 1.39 * 10^{-4}$ $c = -2.893 * 10^{-5} * r^{2} + 0.380 * 10^{-1} * r + 6.069$

 $*r \rightarrow resistivity in \Omega cm$

• Depletion depth [µm] (just p-region)				
Resistivity	-60 V	-120 V	-180 V	
20 Ωcm	9.39	13.00	16.34	
80 Ωcm	19.70	27.47	34.23	
200 Ωcm	28.87	39.92	49.98	

• Lateral deplection [µm]

Resistivity	-60 V	-120 V	-180 V
20 Ωcm	10.26	12.67	14.30
80 Ωcm	13.25	16.49	19.10
200 Ωcm	18.51	23.23	27.57
1000 Ωcm	27.64	37.09	44.84

Depletion depth (center of pixel):

- 2 Lateral depletion: (Let's use a 200 Ωcm MuPix sensors as example)
- \rightarrow Pixel size requirement: 80 μ m \rightarrow Working Voltage (MuPix 8): 60 V
 - Lateral depletion (using equation): 18.51 μ m
 - Distance between diodes < 36 μ m
 - Diode size > 44 μ m

 \rightarrow In an ideal case (equal depletion at pixel corners)

(Lateral depletion)² = 2 * d² Distance between diodes = 2* $\frac{Lateral depletion}{\sqrt{2}}$

- Distance between diodes* < $26 \ \mu m$ before $\rightarrow 36 \ \mu m$
- Diode size* > 55 μ m before \rightarrow 44 μ m

• Diode size* > 54 μ m before \rightarrow 44 μ m

*Need to be optimize with 3D simulations for lateral depletion in the pixel corners

- Distance between diodes < 20 μ m before \rightarrow 26 μ m
- Diode size > 60 μ m before \rightarrow 54 μ m

 \rightarrow For a 100 x 500 μ m² pixel size

1 Distance between diodes

- 200 Ωcm
 - \rightarrow -60 V: 20 μ m
 - \rightarrow -120 V: 24 μ m
- 80 Ωcm
 - \rightarrow -60 V: 14 μ m
 - \rightarrow -120 V: 18 μ m

Diode size

- 200 Ωcm
 - \rightarrow -60 V: 80 x 480 μ m²
 - \rightarrow -120 V: 76 x 476 μ m²
- 80 Ωcm
 - \rightarrow -60 V: 86 x 486 μ m²
 - \rightarrow -120 V: 82 x 482 μ m²

Capacitance

Pixel Capacitance

- \rightarrow Importance of the capacitance:
 - Significant lost of the output voltage step for an amplifier with high detector capacitance
 - Interpixel capacitance determines the cross talk between pixels

Total Capacitance

- Diode Capacitance
- Interpixel Capacitance
- Capacitance of the p-well

Diode Capacitance Vs Diode width

200 Ωcm

InterPixel and Shallow p-well Capacitance

58 % decrease in the capacitance from 0 V to -5 V !!!

Prototypes

MuPix8

• Total pixel capacitance 80 Ω cm (C_t = C₀ + C₁ + C₂)

MuPix8 $C_t = 37.38fF + 0.61fF + 60.13fF$ $C_t = 98.12fF$ AtlasPix3 $C_t = 15.13fF + 0.60fF + 96.44fF$ $C_t = 112.17fF$

@ -60 V @ 80 Ωcm

Breakdown Voltge

Electric Field

• MuPix8 (200 Ωcm at -60 V)

HighRR Seminar 8.07.2020

- TCAD simulation is a powerful tool for designing and optimization of semiconductor detectors.
- \rightarrow Outlook
 - Ongoing studies of pixel structure in 3D and charge collection time
 - Testbeam results with ATLASPix 3 for charge sharing to be analyzed
 - Future testbeam campaign with different pixel size