Physikalisches Institut, Heidelberg University

Pixel Size study of HV-MAPS using TCAD **Simulations**

Annie Meneses Gonzalez HighRR Seminar 8.07.2020

Bundesministerium für Bildung und Forschung

Pixel Detectors

Pixel detectors for particle tracking have resulted resulted in modules which stand

- **1** High rates
- 2 Timing requirements
- **3** Very harsh radiation environment

Current pixel detector technologies:

• Hybrid (passive sensor bump-bonded to an active read-out chip)

Disadvantages:

- High cost
- Large amounts of material \rightarrow disqualify it for tracking low momentum particles

Pixel Detectors

Current pixel detector technologies:

- Hybrid (passive sensor bump-bonded to an active read-out chip)
- Monolithic (such as the MIMOSA detectors)

Disadvantages:

• Collect charges via diffusion \rightarrow Slow for high rate applications

Pixel Detectors

Current pixel detector technologies:

- Hybrid (passive sensor bump-bonded to an active read-out chip)
- Monolithic (such as the MIMOSA detectors)
- High Voltage Monolithic Active Pixel Sensors (HV-MAPS)
	- \Box Integrated readout electronic and sensor (low material budget)
	- \Box Implemented in a commercial CMOS process (cheaper than hybrid sensors)
	- Depletion area ∼ 15 𝜇*m* at -60V for 20 Ω*cm*
	- Fast charge collection via drift (∼ ns)

I. Peric /A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology, NIM A 2007

HV-MAPS Application

\rightarrow The Mu3e Pixel Tracker

The goal of the Mu3e experiment is to search for the lepton flavour violating decay $\mu^+ \rightarrow e^+e^-e^+$ with an ultimate sensitivity of one in 10^{16} μ -decays

- Energies of the decay particles up to half the muon mass (53 MeV)
- Excellent momentum resolution (background $\mu \rightarrow eeevv$)
- Multiple Coulomb scattering affects momentum resolution
- Low material budget
- High Rate of muons decays

Technology Computer Aided Design

Use of computer simulations to develop and optimize semiconductor processing technologies and devices.

Why TCAD?

- Fabrication process and electrical behavior.
- Tiny and complex structures in 2D and 3D.
- Save time and money.
- Complement to laboratory measurements.
- Estimates and optimizes properties of the sensor as:
	- **Breakdown Voltage**
	- **Deplection zone**
	- **Charge collection time**
	- **Pixel Capacitance**
	- **Electric Field**

TCAD Process Flow

Structure Simulation (Device structure and doping profiles)

^{*}Layout of MuPix8

- Device Simulation (Physical models: temperature, mobility, recombination, avalanche, radiation damage)
	- 1 Quasistationary (Breakdown Voltage, Capacitance, Electric Field)
	- 2 Transient Simulation of Minimum Ionizing Particle (MIP) (Charge collection process)

pn-junction

 \rightarrow Reversely biased pn-junction is the building block of HV-MAPS structures

Why?

- Intrinsic silicon substrate
	- $\sim 10^9$ free charge carriers
	- $\sim 10^4$ induced by ionizing particles
- pn-junction reduces the number of free charge carriers by depleting the silicon volume

- Intrinsic silicon: Absence of impurities
- Doping: Mechanism to alter conductivity (inserting additional states in the forbidden region)
	- \rightarrow n-doped: phosphorus, excess of electrons \rightarrow p-doped: boron, excess oh holes

 \rightarrow Reversely biased pn-junction is the building block of HV-MAPS structures

SDE

- Structures created using doping profiles (Gaussian)
- p-doped substrate
- Highly doped n-implant $(~10^{16})$
- Width of depletion area:

$$
W \approx \sqrt{\frac{2 * \epsilon_0 * \epsilon_{Si} * V}{e * N_D}}
$$

N_D→ Concentration of donors

 \rightarrow Reversely biased pn-junction is the building block of HV-MAPS structures

60000

50000

- Structures created using doping profiles (Gaussian) 70000
- p-doped substrate Highly doped n-implant $(∼10^{16})$
	- Width of depletion area:

 $N_D \rightarrow$ Concentration of donors

 \rightarrow Depletion zone:

 \Box Region depleted from free charge carriers

160

 -140

120 100

- 80

 -60

40

-20

- 0

50

 40°

 \rightarrow Reversely biased pn-junction is the building block of HV-MAPS structures

- Structures created using doping profiles (Gaussian)
- p-doping substrate
- Highly doped n-implant $(∼10^{16})$
- Width of depletion area:

$$
W \approx \sqrt{\frac{2 * \epsilon_0 * \epsilon_{Si} * V}{e * N_D}}
$$

N_{*D*}→ Concentration of donors

 \rightarrow Depletion zone:

- \Box Region depleted from free charge carriers
- **Electrically charged**

 \rightarrow Reversely biased pn-junction is the building block of HV-MAPS structures

- Structures created using doping profiles (Gaussian)
- p-doping substrate
- Highly doped n-implant $(∼10^{16})$
- Width of depletion area:

$$
W \approx \sqrt{\frac{2 * \epsilon_0 * \epsilon_{Si} * V}{e * N_D}}
$$

 $N_D \rightarrow$ Concentration of donors

 \rightarrow Depletion zone:

- Region depleted from free charge carriers
- \Box Electrically charged

 \Box Electric Field that collects the signal charge and suppresses the leakage current

Substrate resistivity

• Electric Field • Electric Field

1 Depletion depth

Higher resistivity \rightarrow Thicker depletion zone (Larger sensitive area)

2 Electric Field

Lower resistivity \rightarrow Higher Electric Field (Faster charge collection)

Substrate resistivity

• Lateral depletion

Higher resistivity \rightarrow Larger lateral depletion (Higher efficiency and faster collection charge in the area between pixels)

Depletion depth (just p-region) • Lateral deplection

 $depletion = a * |Voltage |^{2} + b * |Voltage | + c$

 $a = 1.302 \times 10^{-8} \times r^2 + 4.4520 \times 10^{-6} \times r + 4.766 \times 10^{-5}$ $b = -6.214 * 10^{-6} * r^2 + 2.3420 * 10^{-3} * r + 3.948 * 10^{-2}$ $c = 2.053 * 10^{-4} * r^2 - 0.1006 * r + 2.9$

 $a = -1.292 \times 10^{-10} \times r^2 - 1.645 \times 10^{-7} \times r - 1.39 \times 10^{-4}$ $b = -9.542 \times 10^{-8} \times r^2 + 2.702 \times 10^{-4} \times r + 6.052 \times 10^{-2}$ $c = -2.893 * 10^{-5} * r^2 + 0.380 * 10^{-1} * r + 6.069$

 $*$ r → resistivity in Ωcm

• Lateral deplection $\lceil \mu m \rceil$

1 Depletion depth (center of pixel):

- 2 Lateral depletion: (Let's use a 200 Ωcm MuPix sensors as example)
- \rightarrow Pixel size requirement: 80 μ m \rightarrow Working Voltage (MuPix 8): 60 V
	- Lateral depletion (using equation): $18.51 \mu m$
	- Distance between diodes < $36 \mu m$
	- Diode size > 44 μ m

 \rightarrow In an ideal case (equal depletion at pixel corners)

ateral degletio d d (Lateral depletion)² = $2 * d^2$ Distance between diodes = $2 \times \frac{Lateral\ depletion}{\sqrt{2}}$

- Distance between diodes* < 26 μ m before \rightarrow 36 μ m
- Diode size* > 55 μ m before \rightarrow 44 μ m

before \rightarrow 36 μ m

• Diode size* > 54 μ m before \rightarrow 44 μ m

*Need to be optimize with 3D simulations for lateral depletion in the pixel corners

Jaleido de petion d d (Lateral depletion)² = $2 * d^2 = 14^2$ Distance between diodes = $2 \times \frac{Lateral\ depletion}{\sqrt{2}}$

- Distance between diodes $< 20 \mu m$ before \rightarrow 26 μ m
- Diode size > 60 μ m before \rightarrow 54 μ m

 \rightarrow For a 100 x 500 μ m² pixel size

Distance between diodes

- \bullet 200 Ω cm
	- \rightarrow -60 V: 20 μ m
	- \rightarrow -120 V: 24 μ m
- \bullet 80 Ω cm
	- \rightarrow -60 V: 14 μ m
	- \rightarrow -120 V: 18 μ m

Diode size

- 200 Ωcm
	- \rightarrow -60 V: 80 x 480 μ m²
	- \rightarrow -120 V: 76 x 476 μ m²
- \bullet 80 Ω cm
	- \rightarrow -60 V: 86 x 486 μ m²
	- \rightarrow -120 V: 82 x 482 μ m²

Pixel Capacitance

 \rightarrow Importance of the capacitance:

- Significant lost of the output voltage step for an amplifier with high detector capacitance
- Interpixel capacitance determines the cross talk between pixels

Total Capacitance

- Diode Capacitance
- Interpixel Capacitance
- Capacitance of the p-well

Diode Capacitance Vs Diode width

InterPixel and Shallow p-well Capacitance

58 % decrease in the capacitance from 0 V to -5 V !!!

Prototypes

MuPix8

• Total pixel capacitance 80 Ωcm ($C_t = C_0 + C_1 + C_2$)

MuPix8 $C_t = 37.38fF + 0.61fF + 60.13fF$ $C_t = 98.12 fF$

AtlasPix3 $C_t = 15.13fF + 0.60fF + 96.44fF$ $C_t = 112.17fF$

@ -60 V @ 80 Ω*cm*

Breakdown Voltge

Electric Field

• MuPix8 (200 Ω cm at -60 V)

- TCAD simulation is a powerful tool for designing and optimization of semiconductor detectors.
- \rightarrow Outlook
	- Ongoing studies of pixel structure in 3D and charge collection time
	- Testbeam results with ATLASPix 3 for charge sharing to be analyzed
	- Future testbeam campaign with different pixel size