The (d, p) reaction on ${ }^{132 S n *}$

Is it possible/plausible/pursuable at ISOLDE with ISS?

ISS workshop, July 2020

The ISS collaboration and friends (B. P. Kay, C. R. Hoffman, T. L. Tang [Argonne],
A. O. Macchiavelli [Berkeley], Y. Ayyad, J. Chen [FRIB] et al.)
*This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Numbers DE-ACO2-06CH11357

History

The ${ }^{132} \mathrm{Sn}(\mathrm{d}, \mathrm{p})^{133} \mathrm{Sn}$ reaction has been front and center in motivating the development of facilities ($10 \mathrm{MeV} / \mathrm{u}$ RI beams), techniques, and instrumentation for 30+ years. It was central to the development of the solenoidal-spectrometer technique.

Investigation of the (d, p)-reaction on ${ }^{136,132} \mathrm{Xe}$ in inverse kinematics *
G. Kraus ${ }^{1}$, P. Egelhof ${ }^{1}$, H. Emling ${ }^{1}$, E. Grosse ${ }^{1}$, W. Henning ${ }^{1}$, R. Holzmann ${ }^{1}$, H.J. Körner ${ }^{2}$, J.V. Kratz R. Kulessa ${ }^{4}$, Ch. Schieß1 ${ }^{2}$, J.P. Schiffer ${ }^{5}$, W. Wagner ${ }^{2}$, W. Walus ${ }^{4}$, and H.J. Wollersheim ${ }^{1}$

Of particular interest are investigations of single-nucleon transfer reactions near doubly-magic nuclei, as for instance the determination of single-particle energies and matrix elements of the two-body residual interaction in the vicinity of ${ }^{132} S n(N=82, Z=50)$, and of inelastic scattering studies of low-lying collective states.

History

The ${ }^{132} \mathrm{Sn}(\mathrm{d}, \mathrm{p})^{133} \mathrm{Sn}$ reaction has been front and center in motivating the development of facilities ($10 \mathrm{MeV} / \mathrm{u}$ RI beams),

Necessary radioactive beams

 Particle-particle systemParticle-hole system Hole-hole system

4 e.g., $(p, p),(d, n),\left({ }^{3} \mathrm{He}, d\right)$
\downarrow e.g., $(d, 3 \mathrm{He}),(t, \mathrm{a})$
\rightarrow e.g., $(d, p),(p, p)$
< e.g., $(p, d),(d, t)$

> J. P. Schiffer, in Workshop on the Experimental Equipment for an Advanced ISOL Facility, edited by C. Baktash,
> I. Y. Lee, and K. E. Rehm, Lawrence Berkeley National Laboratory Report No. LBNL-43460, 1999 .
a) Solenoidal Geometry

Experimental Equipment for an Advanced ISOL Facility

March 1999

A magnetic solenoid with its axis oriented along the beam direction could serve as a very largeacceptance magnetic spectrograph for low-energy light particles from inverse reactions such as $d\left({ }^{132} \mathrm{Sn}, p\right){ }^{133} \mathrm{Sn}$. In this case the protons of interest are emitted in the backwards hemisphere with energies of 1-10 MeV . The particle energy measurements are done via silicon detector barrels surrounding the beam axis. This type of magnetic spectrograph deserves further study.

Development of the technique/instrum.

A. H. Wuosmaa, J. P. Schiffer et al.,

Nucl. Instrum. Methods Phys. Res. A 580, 1290 (2007)

Development of the technique/instrum.
 and facilities

Up to $10 \mathrm{MeV} / \mathrm{u}$ and above ...
e.g. ATLAS S
e.g. ISOLDE
e.g. ReA

(Pertinent) Examples

In the meantime, ${ }^{133} \mathrm{Sn}$

Excited states in ${ }^{133}$ Sn identified via decay studies (numerous other works too)

The Oak Ridge measurements

The famous work by K. Jones et al. at Oak Ridge ...

- 4.77 MeV/u beam
- 290% purity
- $160 \mu \mathrm{~g} / \mathrm{cm}^{2}$ targe \dagger
- Varying intensity
- ORRUBA setup

Missing 9/2-, $13 / 2^{+}$state (cross section, sub-barrier) and note extremely low Q value

The Oak Ridge measurements

... and J. M. Allmond ...

Exploiting the power of the (${ }^{9} \mathrm{Be},{ }^{8} \mathrm{Be} \rightarrow 2 \mathrm{ay}$) $\left[\right.$ but $\mathrm{p}_{3 / 2}(\mathrm{j})$ preferentially populates j, e.g., h$h_{9 / 2}$ over $h_{11 / 2}$, and $i_{11 / 2}$ over $i_{13 / 2}$]... still a missing 13/2+ state

Where is the $13 / 2+$?

Most likely at around 2700 keV in excitation energy ($S_{n}=2402 \mathrm{keV}$)

Is it possible at ISOLDE?

Assuming $200 \mu \mathrm{~g} / \mathrm{cm}^{2}, 1 \times 10^{5} \mathrm{pps}, 10-40^{\circ} \mathrm{c} . \mathrm{m} .\left(10-35^{\circ}\right.$ for $\left.\mathrm{I}=6\right)$ @ 70% geometrical efficiency, $S=0.6$ for standard OMP parameters in DWBA using Ptolemy. 1 UT $=8 \mathrm{hrs}$.

Is it possible at ISOLDE?

Assuming $200 \mu \mathrm{~g} / \mathrm{cm}^{2}, 1 \times 10^{5} \mathrm{pps}, 10-40^{\circ}$ c.m. ($10-35^{\circ}$ for $\mathrm{I}=6$) @ 70% geometrical efficiency, S=0.6 for standard OMP parameters in DWBA using Ptolemy. 1 UT $=8 \mathrm{hrs} .2 \mathrm{~T}, 50-\mathrm{cm}$ long array

Is it possible at ISOLDE?

Assuming $200 \mu \mathrm{~g} / \mathrm{cm}^{2}, 1 \times 10^{5} \mathrm{pps}, 10-40^{\circ}$ c.m. ($10-35^{\circ}$ for $\mathrm{I}=6$) @ 70% geometrical efficiency, S=0.6 for standard OMP parameters in DWBA using Ptolemy. 1 UT $=8 \mathrm{hrs} .2 \mathrm{~T}, 50-\mathrm{cm}$ long array

Is it possible at ISOLDE?

Assuming $200 \mu \mathrm{~g} / \mathrm{cm}^{2}, 1 \times 10^{5} \mathrm{pps}, 10-40^{\circ}$ c.m. ($10-35^{\circ}$ for $\mathrm{l}=6$) @ 70% geometrical efficiency, S=0.6 for standard OMP parameters in DWBA using Ptolemy. 1 UT $=8 \mathrm{hrs} .2 \mathrm{~T}, 50-\mathrm{cm}$ long array

Simulation

ThetaCM vs Z

Conclusion

It is possible/plausible/pursuable at ISOLDE with ISS, though limited by the beam energy (higher at Argonne, probably at ReA), but the intensity and purity are likely excellent cf. other facilities

Likely not possible elsewhere in next 3-5 years

Recoil detection explored, is likely possible based on experience at Argonne

The cross section for $\mathrm{I}=6$ are just possible, unlike for Hg case (where we had lower MeV/u, higher Z)

Would be the clear determination of all s.p. levels outside ${ }^{132} \mathrm{Sn}$
It also raises an obvious question about ${ }^{134} \mathrm{Te}(\mathrm{d}, \mathrm{p})$-- many have considered, and trying elsewhere (Oak Ridge, Argonne)

Notes for Liam and David

- Which direction in the laboratory are ejectiles emitted? Backwards
- Do you require recoil detection? Yes (No)
- Specific targetry requirements? No
- Absolute or only relative cross sections required? Relative (abs. preferred)
- Other ancillary detectors? "ELUM"

