Opportunities with a cryogenic gas target at the ISS

Daniel Doherty, Gavin Lotay, Wilton Catford, Laetitia Canete University of Surrey ISS Meeting, July 2020

Motivation for a Cryogenic Gas Target

- A **unique tool** to maximise the physics possibilities of the ISS at ISOLDE.
- Primary motivations are direct measurements of astrophysical interest, such as (α, p) reactions, and transfer studies, e.g. (³He,d), for both nuclear structure and astrophysics.
- Some precedent of direct measurements for nuclear astrophysics at ISOLDE, e.g.
 - ⁴⁴T(*α*,*p*) [V. Margerin *et al.*, PLB 2014]
 - ¹⁷F(*p*,*p*') [J.J. He *et al.*, PRC 2009]

But unique advantages when using the ISS

Motivation

The observation of X-ray bursts is interpreted as thermonuclear explosions in the atmosphere of a neutron star in a close binary system.

As temperature and density at the surface of the neutron star increase, the CNO cycles breakout into the *rp* process.

Sensitivity studies highlight the key reactions for understanding these bursts

Energy Generation in X-ray Bursts

THE ASTROPHYSICAL JOURNAL, 872:84 (18pp), 2019 February 10 Influence of Nuclear Reaction Rate Uncertainties on Neutron Star Properties Extracted from X-Ray Burst Model–Observation Comparisons

Zach Meisel, Grant Merz, and Sophia Medvid

THE ASTROPHYSICAL JOURNAL, 830:55 (20pp), 2016 October 20 DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

R. H. CYBURT^{1,2}, A. M. AMTHOR³, A. HEGER^{2,4,5,6}, E. JOHNSON⁷, L. KEEK^{1,2,7,9}, Z. MEISEL^{2,8}, H. SCHATZ^{1,2,7}, AND K. SMITH^{2,10}

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	$^{15}\mathrm{O}(\alpha, \gamma)^{19}\mathrm{Ne}$	D	16	1
2	⁵⁶ Ni(α , p) ⁵⁹ Cu	\mathbf{U}	6.4	1
3	${}^{59}Cu(p, \gamma){}^{60}Zn$	D	5.1	1
4	${}^{61}\text{Ga}(\mathbf{p}, \gamma){}^{62}\text{Ge}$	D	3.7	1
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	1
6	${}^{14}O(\alpha, p){}^{17}F$	D	5.8	1
7	$^{23}\text{Al}(\mathbf{p}, \gamma)^{24}\text{Si}$	D	4.6	1
8	¹⁸ Ne(α , p) ²¹ Na	\mathbf{U}	1.8	1
9	63 Ga(p, γ) 64 Ge	D	1.4	2
10	$^{19}\text{F}(p, \alpha)^{16}\text{O}$	U	1.3	2
11	$^{12}C(\alpha, \gamma)^{16}O$	U	2.1	2
12	${}^{26}{\rm Si}(\alpha, {\rm p}){}^{29}{\rm P}$	U	1.8	2
13	${}^{17}F(\alpha, p){}^{20}Ne$	U	3.5	2
14	$^{24}\mathrm{Mg}(\alpha, \gamma)^{28}\mathrm{Si}$	U	1.2	2
15	${}^{57}Cu(p, \gamma){}^{58}Zn$	D	1.3	2
16	60 Zn(α , p) 63 Ga	\mathbf{U}	1.1	2
17	${}^{17}F(p, \gamma){}^{18}Ne$	U	1.7	2
18	40 Sc(p, γ) 41 Ti	D	1.1	2
19	$^{48}Cr(p, \gamma)^{49}Mn$	D	1.2	2

Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

A variety of (p,γ) and (α,p) reactions have significant affect on the energy generated in X-ray bursts.

Examples - (³He,*d*)

- Gas at ~90 K will have ~3 times the gas density compared to room temperature. At 500 Torr -> 50-100 μg/cm² solid target.
 - => (³He,*d*) measurements are feasible, direct analogue of proton-capture reaction.

 $E_B = 4.5 \text{ MeV/u}$ B = 2.85 Torr Restrict to $E_{COM} > 30^\circ$, so that d energy is sufficient to escape target.

Ground state Excited state (6 MeV)

Examples – (⁴He,*p*)

 Coincidence measurement exploiting ISS geometry, powerful way of reducing background. Excellent geometrical efficiency compared to more traditional methods.

=> Ion Chamber for detecting recoils

Cryogenic Gas Target with HELIOS @ ANL

- HELIOS design (previously used with Split-pole) shown above, target fan to allow for quick target changes.
- Currently uses Kapton windows
- Target thickness ~50 µg/cm²
- Ability to accurately identify recoils is crucial (e.g. Ion Chamber)

HELIOS Cryogenic Target

Proton spectra from $d({}^{14}C, p){}^{15}C$ reaction

J. Lai, PhD Thesis, LSU (2016)

Previous Studies of ²⁰Ne(α ,p) and ¹⁴C(³He,d)

A Cryogenic Gas Target at the ISS

- Capital requested (and matched) as part of Surrey Consolidated Grant + cross-community support.
- We propose to build a copy of the University of Manchester IC gashandling system (MKS Type 250 controller, 248 control valves and a baratron capacitance manometer).
- Larger gas cell windows to be explored (compared to HELIOS design).
- Construction and first experiments before long shut down (end of 2024).

Challenges and Discussion Points

- Gas targets are <u>extremely challenging</u> but the rewards are substantial and makes good use of the unique beam species available at HIE-ISOLDE.
- Optimum material and geometry of windows to be determined, some preliminary discussions at ISS meeting in 2019. Windows are relatively thick.
- Required beam energies relatively low for direct astrophysical measurements (down to < 2 Mev/u, REX-ISOLDE energies..)
- Need normalization for (α, p) measurements $\Rightarrow (\alpha, \alpha')$

Thank you very much!

ISS meeting, 20-21st July, 2020