Studying Astrophysical X-ray Bursts with the ISS at CERN: Measurement of the ${}^{61}Zn(d,p){}^{62}Zn$ Reaction

Nucleosynthesis in Type-I X-ray Bursts

• During burst, high enough temperatures are reached to breakout of HCNO into the *rp* process

Nucleosynthesis in Type-I X-ray Bursts

• Models have identified several key waiting points along the *rp* process path [e.g. ⁶⁰Zn]

Theoretical Models of Type-I X-ray Bursts

Baseline

Most recently, Meisel et al. [ApJ 872, ullet84 (2019)] compared model parameters with astronomical observations of GS 1826-24

Studying the Astrophysical ${}^{61}Ga(p,\gamma){}^{62}Ge$ Reaction

The astrophysical ${}^{61}\text{Ga}(p,\gamma){}^{62}\text{Ge}$ reaction is dominated by resonances in ${}^{62}\text{Ge} [S_p = 2050(30) \text{ keV}]$

- 61 Ga ~ 10^2 pps TRIUMF
- ${}^{61}\text{Ga} \sim 10^1 \text{ pps} \text{ISOLDE}$
- ${}^{61}\text{Ga} \sim 10^3 \text{ pps} \text{FRIB PAC ONE}$

 61 Zn(d,p) 62 Zn

⁶²Ga

SOLUTION: Measure the mirror reaction ⁶¹Zn(*d*, p)⁶²Zn and determine strengths of resonances

Determining the 61 Ga(p, γ) 62 Ge reaction rate from 62 Zn

- Level structure of ⁶²Zn is well known
- Low level-density
- Measure *C*²*S* for excited states above 2 MeV
- Utilize state-of-the-art shell model calculations

Measurement of ⁶¹Zn(*d*,*p*) using the ISS

- Beam of ⁶¹Zn ions at 7.5 MeV/u
- ~100 $\mu g/cm^2$ thick CD₂ target
- Protons detected at backward laboratory angles (COM ~ 10° - 30°)

- low-*l* angular momentum transfer are the most important for astrophysical processes
- Elastically-scattered deuterons will be detected in a downstream annular silicon detector

Readiness and Beam Request

- *I*_{beam} ~4 x 10⁶ pps reported for ⁶¹Zn. Reasonably assume ~4 x 10⁵ pps at ISS
- RILIS ionized neutron-deficient Zn beams largely free from contamination. [Ga suppressed by more than 7 orders of magnitude in comparison to Zn]
- Estimate ~44 counts (for $C^2S \sim 0.5$) in each ring of detectors per day, where each ring essentially corresponds to an angular bin.

BEAM SHIFTS = 10 (Measurement) + 4 (Background & Optimization)

Ideal nuclear astrophysics measurement for ISS

NEW COLLABORATORS WELCOME