B UCLouvain @

Institut de recherche en mathématique et physique
Centre de Cosmologie, Physique des Particules et Phénoménologie

Fortran versus C++ speed
Olivier Mattelaer

r NN & (\{.7 £ x. Monte

pi. ;1?* | Carlo

—xwtm net

Motivation

/
 MG5aMC 1s the only code of MCnet still relying

in Fortran
e Interface
= |lhapdf is currently a mghtmare.

= Can be easier to link to Parton-Shower

* This small comparison was originally trigger by the
question about using CudaC or CudaFortan

= No real plan to move to C

_

/

* Results can be interesting for other MCnet tools
= This 1s the reason for this lightning talk

o

AN

Mattelaer Olivier McCwnet virtual presewtatiow

Standalone mode

« MG5aMC can create simple code that ONLY evaluates

the amplitude square.
= Linked to Rambo for the PS generation
= Code available in c++ and 1n fortran

» Code not 100% i1dentical

* Fortran code has a layer of optimisation to
reduce RAM usage (was found irrelevant for the

speed)

= The comparison therefore 1s directly linked to the
speed of evaluation of the matrix-element

» And therefore to the speed of double precision
complex number arithmetic

» Not same as a Parton-shower arithmetic

o

Mattelaer Olivier McCwnet virtual presewtatiow

Setup

-

* Process:gg>tt~gg
= 10 thousands phase-space evaluated
= Timing include rambo timing

e Timing presented here with a quite old gcc version

(4.8)

= Findings confirmed with more recent version of
gcc/ different machines.

Result

Compilation flag

-0

¢ C++1s three times slower

Result

Compilation flag

-0

-

e C++1s three times slower
= PYS8 author 1s aware of that:

» Stefan gives mod a user class implementing complex
number

/

Timing for code/flag

Complex
hack

/ e C++ 1s three times slower \
= PYS8 author is aware of that:

» Stefan gives mod a user class implementing
complex number

» Fix indeed the 1ssue

» How is this possible?

. /

Timing for code/flag

Complex
hack

* O3 1s ftull optimisation

= Including hardware specific

= Small gain if at all

. /

Timing for code/flag

Complex
hack

9.3

8.6 6.4

(. Ofast N

= optimizations that are not valid for all standard-

compliant programs

= Pythia hack not needed anymore

_ = Fortran still faster but reasonable Y,
. Mattelaeroliviee MCmetvirtwalpresemtation o

Timing for code/flag

Complex
hack

/' C++ 1s more careful than fortran in the handling Of\

nan
= (GCC has dedicated linked to that

» Fex-fortan-rules

\ » FCX-,;lmlted-range /
 Mattelaeroliviee ~ MCwetvirtualpresemtation 10

Timing for code/flag

Complex

hack

-Ofast

-0 -fcx-fortran-rules -fcx-limited-
range

Conclusion

/VV Inner \

e Fortran is faster

= without any compilation flag

= With most agressive flag

.

Message

AN

e Compiler flag are important

« Using Black Box can hurt you

- /

Remark

1) On Mac clang does not support the gcc flag for speeding up complex number

-—- -— - - - -— -

~-fcx-limited-range
When enabled, this option states that a range reduction step is not needed when performing complex division. Also, there is no checking whether the result of a complex multiplication o
division is NaN + I*NaN, with an attempt to rescue the situation in that case. The default is -fno-cx-limited-range, but is enabled by -ffast-math.

This option controls the default setting of the ISO C99 cx_rimrtep rance pragma. Nevertheless, the option applies to all languages.

-fex-fortran-rules
Complex multiplication and division follow Fortran rules. Range reduction is done as part of complex division, but there is no checking whether the result of a complex multiplication or
division is NaN + I+*NaN, with an attempt to rescue the situation in that case.

The default iS -fno-cx-fortran-rules.

