NLO+PS matching for loopinduced processes in SHERPA

Presented by Simon Luca Villani

Introduction

- Loop-induced processes feature first non-trivial contribution at loop-level only

Introduction

- Loop-induced processes feature first non-trivial contribution at loop-level only
- Bosonic external configuration, e.g. gluon initiated. In particular gluon-initiated processes are of great relevance for LHC precision studies due to the large initial state gluon flux

$$
g g \rightarrow Z H \text { process: }
$$

Formally NNLO

Introduction

- Loop-induced processes feature first non-trivial contribution at loop-level only
- Bosonic external configuration, e.g. gluon initiated. In particular gluon-initiated processes are of great relevance for LHC precision studies due to the large initial state gluon flux

Peculiarities:

- Ren / fac uncertainty rather big
- NLO very challenging due to the presence of massive multi-scale double box integrals
- Sensitive to theory parameters variation

$$
g g \rightarrow Z H \text { process: }
$$

Formally NNLO

Introduction

- Loop-induced processes feature first non-trivial contribution at loop-level only
- Bosonic external configuration, e.g. gluon initiated. In particular gluon-initiated processes are of great relevance for LHC precision studies due to the large initial state gluon flux

$$
g g \rightarrow Z H \text { process: }
$$

Formally NNLO

Introduction

- Loop-induced processes feature first non-trivial contribution at loop-level only
- Bosonic external configuration, e.g. gluon initiated. In particular gluon-initiated processes are of great relevance for LHC precision studies due to the large initial state gluon flux

[^0]$$
g g \rightarrow Z H \text { process: }
$$

Formally NNLO

Introduction: impact on a full simulation

Introduction: impact on a full simulation

$g g \rightarrow Z Z$ case:

\sqrt{s}	8 TeV	13 TeV	8 TeV	13 TeV
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
LO	$8.1881(8)_{-3.2 \%}^{+2.4 \%}$	$13.933(1)_{-6.4 \%}^{+5.5 \%}$	-27.5\%	-29.8\%
NLO	$11.2958(4)_{-2.0 \%}^{+2.5 \%}$	$19.8454(7)_{-2.1 \%}^{+2.5 \%}$	0\%	0\%
$q \bar{q} \mathrm{NNLO}$	$12.09(2)_{-1.1 \%}^{+1.1 \%}$	$21.54(2)_{-1.2 \%}^{+1.1 \%}$	+7.0\%	+8.6\%
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{ggLO}}-1$	
$\begin{aligned} & g g \mathrm{LO} \\ & g g \mathrm{NLO}_{g g} \\ & g g \mathrm{NLO} \end{aligned}$	$0.79355(6)_{-20.9 \%}^{+28.2 \%}$	$2.0052(1)_{-17.9 \%}^{+23.5 \%}$	0\%	0\%
	$1.4787(4)_{-13.1 \%}^{+15.9 \%}$	$3.626(1)_{-12.7 \%}^{+15.2 \%}$	+86.3\%	+80.8\%
	$1.3892(4)_{-13.6 \%}^{+15.4 \%}$	$3.425(1)_{-12.0 \%}^{+13.9 \%}$	+75.1\%	+70.8\%
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
NNLO	$12.88(2)_{-2.2 \%}^{+2.8 \%}$	$23.55(2)_{-2.6 \%}^{+3.0 \%}$	+14.0\%	+18.7\%
nNNLO	$13.48(2)_{-2.3 \%}^{+2.6 \%}$	$24.97(2)_{-2.7 \%}^{+2.9 \%}$	+19.3\%	$+25.8 \%$

$g g \rightarrow H Z$ case:
[Astill, W. et al.: 1804.08141]

| Fiducial cross section | HZJ-MiNLO | MCFM-8.0 | HZ-NNLOPS (LHEF) | HZNNLOPS |
| :--- | :---: | :---: | :---: | :---: | :---: |
| no $g g \rightarrow \mathrm{HZ}$ | $6.59_{-6.2 \%}^{+7.2 \%} \mathrm{fb}$ | $7.14_{-0.9 \%}^{+0.5 \%} \mathrm{fb}$ | $7.14_{-0.4 \%}^{+0.3 \%} \mathrm{fb}$ | $6.49_{-0.6 \%}^{+0.8 \%} \mathrm{fb}$ |
| with $g g \rightarrow \mathrm{HZ}$ | - | $7.92_{-1.5 \%}^{+2.0 \%} \mathrm{fb}$ | $7.90_{-2.0 \%}^{+2.8 \%} \mathrm{fb}$ | $7.16_{-2.1 \%}^{+3.1 \%} \mathrm{fb}$ |
| no $g g \rightarrow \mathrm{HZ}$, high- $p_{t, Z}$ | $1.13_{-5.3 \%}^{+5.9 \%} \mathrm{fb}$ | $1.21_{-0.2 \%}^{+0.1 \%} \mathrm{fb}$ | $1.21_{-0.3 \%}^{+0.2 \%} \mathrm{fb}$ | $1.13_{-1.2 \%}^{+1.5 \%} \mathrm{fb}$ |
| with $g g \rightarrow \mathrm{HZ}$, high- $p_{t, Z}$ | | $1.49_{-4.1 \%}^{+5.3 \%} \mathrm{fb}$ | $1.48_{-4.0 \%}^{+5.3 \%} \mathrm{fb}$ | $1.42_{-5.1 \%}^{+6.9 \%} \mathrm{fb}$ |

Introduction: impact on a full simulation

$g g \rightarrow Z Z$ case:

\sqrt{s}	8 TeV	13 TeV	8 TeV	13 TeV
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
LO	$8.1881(8)_{-3.2 \%}^{+2.4 \%}$	$13.933(1)_{-6.4 \%}^{+5.5 \%}$	-27.5\%	-29.8\%
NLO	$11.2958(4)_{-2.0 \%}^{+2.5 \%}$	$19.8454(7)_{-2.1 \%}^{+2.5 \%}$	0\%	0\%
$q \bar{q} \mathrm{NNLO}$	$12.09(2)_{-1.1 \%}^{+1.1 \%}$	$21.54(2)_{-1.2 \%}^{+1.1 \%}$	+7.0\%	+8.6\%
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{ggLO}}-1$	
$\begin{aligned} & g g \mathrm{LO} \\ & g g \mathrm{NLO}_{g g} \\ & g g \mathrm{NLO} \end{aligned}$	$\begin{gathered} \hline 0.79355(6)\left(\left.\begin{array}{c} +28.2 \% \\ -20.9 \% \\ 1.4787(4 \end{array}\right\|_{-13.1 \%} ^{+15.9 \%}\right. \\ 1.3892(4)_{-13.6 \%}^{+15.4 \%} \\ \hline \end{gathered}$	$\begin{array}{r}2.0052(1){ }_{-}^{+23.5 \%} \\ 3.626(1) \\ 3.425(1) \\ +12.2 \% \\ -12.7 \% \\ +13.9 \% \\ -12.0 \% \\ \hline\end{array}$	0\%	0\%
			+86.3\%	+80.8\%
			$+75.1 \%$	+70.8\%
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
NNLO	$12.88(2)_{-2.2 \%}^{+2.8 \%}$	$23.55(2)_{-2.6 \%}^{+3.0 \%}$	$+14.0 \%$	+18.7\%
nNNLO	$13.48(2)_{-2.3 \%}^{+2.6 \%}$	$24.97(2)_{-2.7 \%}^{+2.9 \%}$	+19.3\%	+25.8\%

$g g \rightarrow H Z$ case:
[Astill, W. et al.: 1804.08141]

| Fiducial cross section | HZJ-MiNLO | MCFM-8.0 | HZ-NNLOPS (LHEF) | HZNNLOPS |
| :--- | :---: | :---: | :---: | :---: | :---: |
| no $g g \rightarrow \mathrm{HZ}$ | $6.59_{-6.2 \%}^{+7.2 \%} \mathrm{fb}$ | $7.14_{-0.9 \%}^{+0.5 \%} \mathrm{fb}$ | $7.14_{-0.4 \%}^{+0.3 \%} \mathrm{fb}$ | $6.49_{-0.6 \%}^{+0.8 \%} \mathrm{fb}$ |
| with $g g \rightarrow \mathrm{HZ}$ | - | $7.92_{-1.5 \%}^{+2.0 \%} \mathrm{fb}$ | $7.90_{-2.0 \%}^{+2.8 \%} \mathrm{fb}$ | $7.16_{-2.1 \%}^{+3.1 \%} \mathrm{fb}$ |
| no $g g \rightarrow \mathrm{HZ}$, high- $p_{t, Z}$ | $1.13_{-5.3 \%}^{+5.9 \%} \mathrm{fb}$ | $1.21_{-0.2 \%}^{+0.1 \%} \mathrm{fb}$ | $1.21_{-0.3 \%}^{+0.2 \%} \mathrm{fb}$ | $1.13_{-1.2 \%}^{+1.5 \%} \mathrm{fb}$ |
| with $g g \rightarrow \mathrm{HZ}$, high $-p_{t, Z}$ | | $1.49_{-4.1 \%}^{+5.3 \%} \mathrm{fb}$ | $1.48_{-4.0 \%}^{+5.3 \%} \mathrm{fb}$ | $1.42_{-5.1 \%}^{+6.9 \%} \mathrm{fb}$ |

Introduction: impact on a full simulation

$g g \rightarrow Z Z$ case:

\sqrt{s}	[Grazzini, M. et al: JHEP03(2019)070]			
	8 TeV	13 TeV	8 TeV	13 TeV
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
LO	$8.1881(8){ }_{-3.2 \%}^{+2.4 \%}$	$13.933(1)_{-6.4 \%}^{+5.5 \%}$	-27.5\%	-29.8\%
NLO	$11.2958(4)_{-2.0 \%}^{+2.5 \%}$	$19.8454(7)_{-2.1 \%}^{+2.5 \%}$	0\%	0\%
$q \bar{q} \mathrm{NNLO}$	$12.09(2)_{-1.1 \%}^{+1.1 \%}$	$21.54(2)_{-1.2 \%}^{+1.1 \%}$	+7.0\%	+8.6\%
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{ggLO}}-1$	
$\begin{aligned} & g g \mathrm{LO} \\ & g g \mathrm{NLO}_{g g} \\ & g g \mathrm{NLO} \end{aligned}$	$\left.\begin{array}{r} 0.79355(6 \\ 1.4787(4) \\ 1.3892(4) \end{array} \begin{array}{\|c} +20.9 \% \\ +15.9 \% \\ -13.1 \% \\ +15.4 \% \\ -13.6 \% \end{array}\right)$	$\begin{gathered} 2.0052(1)\left(\begin{array}{l} +23.5 \% \\ -17.9 \% \\ 3.626(1) \\ 3.425(1) \end{array} \begin{array}{l} +15.2 \% \\ -12.7 \% \\ +13.9 \% \\ -12.0 \% \end{array}\right. \\ \hline \end{gathered}$	0\%	0\%
			$+86.3 \%$$+75.1 \%$	+80.8\%
				+70.8\%
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
NNLO	$12.88(2)_{-2.2 \%}^{+2.8 \%}$	$23.55(2)_{-2.6 \%}^{+3.0 \%}$	+14.0\%	+18.7\%
nNNLO	$13.48(2)_{-2.3 \%}^{+2.6 \%}$	$24.97(2)_{-2.7 \%}^{+2.9 \%}$	+19.3\%	+25.8\%

	8 TeV	13 TeV
NNLO		

- It even doubles the total uncertainty
- ggLO largely underestimates the NLO
$g g \rightarrow H Z$ case:
[Astill, W. et al.: 1804.08141]

| Fiducial cross section | HZJ-MiNLO | MCFM-8.0 | HZ-NNLOPS (LHEF) | HZNNLOPS |
| :--- | :---: | :---: | :---: | :---: | :---: |
| no $g g \rightarrow \mathrm{HZ}$ | $6.59_{-6.2 \%}^{+7.2 \%} \mathrm{fb}$ | $7.14_{-0.9 \%}^{+0.5 \%} \mathrm{fb}$ | $7.14_{-0.4 \%}^{+0.3 \%} \mathrm{fb}$ | $6.49_{-0.6 \%}^{+0.8 \%} \mathrm{fb}$ |
| with $g g \rightarrow \mathrm{HZ}$ | - | $7.92_{-1.5 \%}^{+2.0 \%} \mathrm{fb}$ | $7.90_{-2.0 \%}^{+2.8 \%} \mathrm{fb}$ | $7.16_{-2.1 \%}^{+3.1 \%} \mathrm{fb}$ |
| no $g g \rightarrow \mathrm{HZ}$, high- $p_{t, Z}$ | $1.13_{-5.3 \%}^{+5.9 \%} \mathrm{fb}$ | $1.21_{-0.2 \%}^{+0.1 \%} \mathrm{fb}$ | $1.21_{-0.3 \%}^{+0.2 \%} \mathrm{fb}$ | $1.13_{-1.2 \%}^{+1.5 \%} \mathrm{fb}$ |
| with $g g \rightarrow \mathrm{HZ}$, high $-p_{t, Z}$ | | $1.49_{-4.1 \%}^{+5.3 \%} \mathrm{fb}$ | $1.48_{-4.0 \%}^{+5.3 \%} \mathrm{fb}$ | $1.42_{-5.1 \%}^{+6.9 \%} \mathrm{fb}$ |

Introduction: impact on a full simulation

$g g \rightarrow Z Z$ case:

\sqrt{s}	8 TeV	13 TeV	8 TeV	13 TeV
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
LO	$8.1881(8)_{-3.2 \%}^{+2.4 \%}$	$13.933(1)_{-6.4 \%}^{+5.5 \%}$	-27.5\%	-29.8\%
NLO	$11.2958(4)_{-2.0 \%}^{+2.5 \%}$	$19.8454(7)_{-2.1 \%}^{+2.5 \%}$	0\%	0\%
$q \bar{q} \mathrm{NNLO}$	$12.09(2)_{-1.1 \%}^{+1.1 \%}$	$21.54(2)_{-1.2 \%}^{+1.1 \%}$	+7.0\%	+8.6\%
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{ggLO}}-1$	
$\begin{aligned} & g g \mathrm{LO} \\ & g g \mathrm{NLO}_{g g} \\ & g g \mathrm{NLO} \end{aligned}$	$0.79355(6)_{-20.9 \%}^{+28.2 \%}$	$2.0052(1){ }_{-17.9 \%}^{+23.5 \%}$	0\%	0\%
	$1.4787(4)_{-13.1 \%}^{+15.9 \%}$	$3.626(1){ }_{-12.7 \%}^{+15.2 \%}$	$+86.3 \%$	+80.8\%
	$1.3892(4){ }_{-13.6 \%}^{+15.4 \%}$	$3.425(1)\binom{+13.9 \%}{-12.0 \%}$	$+75.1 \%$	+70.8\%
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
NNLO nNNLO	$12.88(2)_{-2.2 \%}^{+2.8 \%}$	$23.55(2)_{-2.6 \%}^{+3.0 \%}$	$+14.0 \%$	+18.7\%
	$13.48(2)_{-2.3 \%}^{+2.6 \%}$	$24.97(2)_{-2.7 \%}^{+2.9 \%}$	+19.3\%	+25.8\%

	8 TeV	13 TeV
NNLO		

- It even doubles the total uncertainty
- ggLO largely underestimates the NLO
$g g \rightarrow H Z$ case:
[Astill, W. et al.: 1804.08141]

Fiducial cross section	HZJ-MiNLO	MCFM-8.0	HZ-NNLOPS (LHEF)	HZNNLOPS
no $g g \rightarrow \mathrm{HZ}$	$6.59_{-6.2 \%}^{+7.2 \%} \mathrm{fb}$	$7.14_{-0.9 \%}^{+0.5 \%} \mathrm{fb}$	$7.14_{-0.4 \%}^{+0.3 \%} \mathrm{fb}$	$6.49_{-0.6 \%}^{+0.8 \%} \mathrm{fb}$
with $g g \rightarrow \mathrm{HZ}$	-	$7.92_{-1.5 \%}^{+2.0 \%} \mathrm{fb}$	$7.90_{-2.0 \%}^{+2.8 \%} \mathrm{fb}$	$7.16_{-2.1 \%}^{+3.1 \%} \mathrm{fb}$
no $g g \rightarrow \mathrm{HZ}$ high $p_{t, Z}$	$1.13_{-5.3 \%}^{+5.9 \%} \mathrm{fb}$	$1.21_{-0.2 \%}^{+0.1 \%} \mathrm{fb}$	$1.21_{-0.3 \%}^{+0.2 \%} \mathrm{fb}$	$1.13_{-1.2 \%}^{+1.5 \%} \mathrm{fb}$
with $g g \rightarrow \mathrm{HZ}$, high- $p_{t, Z}$	-	$1.49_{-4.1 \%}^{+5.3 \%} \mathrm{fb}$	$1.48_{-4.0 \%}^{+5.3 \%} \mathrm{fb}$	$1.42_{-5.1 \%}^{+6.9 \%} \mathrm{fb}$

LO matched to parton shower

Hardest jet transverse momentum

LO matched to parton shower

Again $g g \rightarrow H Z$ case:

- SHERPA shower starting scale has been varied by a factor $\sqrt{2}$ around its central value of $m_{Z H}$

Hardest jet transverse momentum
[LH 2019: 2003.01700]

Indicative
band

Indicative
band

LO matched to parton shower

Again $g g \rightarrow H Z$ case:

- SHERPA shower starting scale has been varied by a factor $\sqrt{2}$ around its central value of $m_{Z H}$
- For $p_{\perp}>250 \mathrm{GeV}$ parton shower bands largely exceed the (μ_{R}, μ_{F}) variation

Hardest jet transverse momentum
[LH 2019: 2003.01700]

Indicative
band

Indicative
band

LO matched to parton shower

Again $g g \rightarrow H Z$ case:

- SHERPA shower starting scale has been varied by a factor $\sqrt{2}$ around its central value of $m_{Z H}$
- For $p_{\perp}>250 \mathrm{GeV}$ parton shower bands largely exceed the (μ_{R}, μ_{F}) variation
- Discrepancy between SHERPA and POWHEG+Pythia fall within the shower starting scale variation band

Hardest jet transverse momentum
[LH 2019: 2003.01700]

ndicative
band
band

Indicative
band

LO matched to parton shower

Again $g g \rightarrow H Z$ case:

- SHERPA shower starting scale has been varied by a factor $\sqrt{2}$ around its central value of $m_{Z H}$
- For $p_{\perp}>250 \mathrm{GeV}$ parton shower bands largely exceed the (μ_{R}, μ_{F}) variation
- Discrepancy between SHERPA and POWHEG+Pythia fall within the shower starting scale variation band
[Hespel, B. et al.: 1503.01656]

Parton shower starting scale variation pushed to zero

Hardest jet transverse momentum
[LH 2019: 2003.01700]

Indicative
band

NLO matched to parton shower

In Sherpa 3.0.0 $g g \rightarrow H H$ is available at full Standard Model only for on-shell final states and can thus be used as test case

Run card configuration
example:
ME_GENERATORS:

- External
- OpenLoops

BEAMS: 2212
BEAM_ENERGIES: 6500
PROCESSES:

- "21 21 -> 25 25":

Order: \{QCD: 2, EW: 2\}
NLO_Mode: MC@NLO
NLO_Order: \{QCD: 1, EW: 0\}
Loop_Generator: DiHiggsNLO
Integrator: Rambo

NLO matched to parton shower

In Sherpa 3.0.0 $g g \rightarrow H H$ is available at full Standard Model only for on-shell final states and can thus be used as test case

Run card configuration
example:
ME_GENERATORS:

- External
- OpenLoops

BEAMS: 2212
BEAM_ENERGIES: 6500
PROCESSES:

- "21 21 -> 25 25":

Order: \{QCD: 2, EW: 2\}
NLO_Mode: MC@NLO
NLO_Order: \{QCD: 1, EW: 0\}
Loop_Generator: DiHiggsNLO $\longleftarrow \quad$ From interpolation
Integrator: Rambo
[Heinrich, G. et al: 1703.09252]

NLO matched to parton shower

In Sherpa 3.0.0 $g g \rightarrow H H$ is available at full Standard Model only for on-shell final states and can thus be used as test case

Run card configuration example:

ME_GENERATORS:

- External
- OpenLoops

BEAMS: 2212
BEAM_ENERGIES: 6500
PROCESSES:

- "21 21 -> 25 25":

Order: \{QCD: 2, EW: 2\}
NLO_Mode: MC@NLO
NLO_Order: \{QCD: 1, EW: 0\} Loop_Generator: DiHiggsNLO Integrator: Rambo
[Heinrich, G. et al: 1703.09252]

LO suffers by the same large PS starting scale uncertainty shown before for other processes

NLO matched to parton shower

In Sherpa 3.0.0 $\mathrm{gg} \rightarrow \mathrm{HH}$ is available at full Standard Model only for on-shell final states and can thus be used as test case

NLO matched to parton shower

In Sherpa 3.0.0 $\mathrm{gg} \rightarrow \mathrm{HH}$ is available at full Standard Model only for on-shell final states and can thus be used as test case

Showered result doesn't match NLO in the tail

Large uncertainties from S events

NLO matched to parton shower

What causes this mismatch?

MC@NLO general expression:

$$
\begin{aligned}
\langle O\rangle= & \int d \phi_{B}\left(B\left(\phi_{B}\right)+V\left(\phi_{B}\right)+I\left(\phi_{B}\right)\right) O\left(\phi_{B}\right) \times \\
& \times\left[\Delta\left(t_{0}, \mu_{P S}^{2}\right)+\int d \phi_{1} \Delta\left(t, \mu_{P S}^{2}\right) \frac{D\left(\phi_{B}, \phi_{1}\right)}{B\left(\phi_{B}\right)} \Theta\left(\mu_{P S}^{2}-t\right) \Theta\left(t-t_{0}\right)\right]+\quad \text { S events } \\
& +\int d \phi_{R} H\left(\phi_{R}\right) O\left(\phi_{R}\right)
\end{aligned}
$$

NLO matched to parton shower

What causes this mismatch?

MC@NLO general expression:

$$
\begin{aligned}
\langle O\rangle= & \int d \phi_{B}\left(B\left(\phi_{B}\right)+V\left(\phi_{B}\right)+I\left(\phi_{B}\right)\right) O\left(\phi_{B}\right) \times \\
& \times\left[\Delta\left(t_{0}, \mu_{P S}^{2}\right)+\int d \phi_{1} \Delta\left(t, \mu_{P S}^{2}\right) \frac{D\left(\phi_{B}, \phi_{1}\right)}{B\left(\phi_{B}\right)} \Theta\left(\mu_{P S}^{2}-t\right) \Theta\left(t-t_{0}\right)\right]+\quad \text { S events } \\
& +\int d \phi_{R} H\left(\phi_{R}\right) O\left(\phi_{R}\right)
\end{aligned}
$$

For observables insensitive to Born kinematical configuration

$$
\begin{aligned}
\langle O\rangle= & \int d \phi_{B}\left(B\left(\phi_{B}\right)+V\left(\phi_{B}\right)+I\left(\phi_{B}\right)\right) O\left(\phi_{B}\right) \times \\
& \times\left[\Delta\left(t_{b}, \mu_{P S}^{2}\right)+\int d \phi_{1} \Delta\left(t, \mu_{P S}^{2}\right) \frac{D\left(\phi_{B}, \phi_{1}\right)}{B\left(\phi_{B}\right)} \Theta\left(\mu_{P S}^{2}-t\right) \Theta\left(t-t_{0}\right)\right]+ \\
& +\int d \phi_{R} H\left(\phi_{R}\right) O\left(\phi_{R}\right)
\end{aligned}
$$

NLO matched to parton shower

What causes this mismatch?

MC@NLO general expression:

$$
\begin{aligned}
\langle O\rangle= & \int d \phi_{B}\left(B\left(\phi_{B}\right)+V\left(\phi_{B}\right)+I\left(\phi_{B}\right)\right) O\left(\phi_{B}\right) \times \\
& \times\left[\Delta\left(t_{0}, \mu_{P S}^{2}\right)+\int d \phi_{1} \Delta\left(t, \mu_{P S}^{2}\right) \frac{D\left(\phi_{B}, \phi_{1}\right)}{B\left(\phi_{B}\right)} \Theta\left(\mu_{P S}^{2}-t\right) \Theta\left(t-t_{0}\right)\right]+\quad \text { S events } \\
& +\int d \phi_{R} H\left(\phi_{R}\right) O\left(\phi_{R}\right)
\end{aligned}
$$

For observables insensitive to Born kinematical configuration and focussing on the high energy tail

$$
\begin{aligned}
\langle O\rangle= & \int d \phi_{B}\left(B\left(\phi_{B}\right)+V\left(\phi_{B}\right)+I\left(\phi_{B}\right)\right) O\left(\phi_{B}\right) \times \\
& \times\left[\Delta\left(t_{b}, \mu_{P S}^{2}\right)+\int d \phi_{1} \Delta\left(t, \mu_{P S}^{2}\right) \frac{D\left(\phi_{B}, \phi_{1}\right)}{B\left(\phi_{B}\right)} \Theta\left(\mu_{P S}^{2}-t\right) \Theta\left(t-t_{0}\right)\right]+ \\
& +\int d \phi_{R} H\left(\phi_{R}\right) O\left(\phi_{R}\right) \quad \text { It goes to 1 }
\end{aligned}
$$

NLO matched to parton shower

What causes this mismatch?

MC@NLO general expression:

$$
\begin{aligned}
\langle O\rangle= & \int d \phi_{B}\left(B\left(\phi_{B}\right)+V\left(\phi_{B}\right)+I\left(\phi_{B}\right)\right) O\left(\phi_{B}\right) \times \\
& \times\left[\Delta\left(t_{0}, \mu_{P S}^{2}\right)+\int d \phi_{1} \Delta\left(t, \mu_{P S}^{2}\right) \frac{D\left(\phi_{B}, \phi_{1}\right)}{B\left(\phi_{B}\right)} \Theta\left(\mu_{P S}^{2}-t\right) \Theta\left(t-t_{0}\right)\right]+\quad \text { S events } \\
& +\int d \phi_{R} H\left(\phi_{R}\right) O\left(\phi_{R}\right)
\end{aligned}
$$

For observables insensitive to Born kinematical configuration and focussing on the high energy tail

$$
\begin{aligned}
\langle O\rangle= & \int d \phi_{B}\left(B\left(\phi_{B}\right)+V\left(\phi_{B}\right)+I\left(\phi_{B}\right)\right) O\left(\phi_{B}\right) \times \\
& \times \int d \phi_{1} \frac{D\left(\phi_{B}, \phi_{1}\right)}{B\left(\phi_{B}\right)} \Theta\left(\mu_{P S}^{2}-t\right)+ \\
& +\int d \phi_{R} H\left(\phi_{R}\right) O\left(\phi_{R}\right)
\end{aligned}
$$

$$
\begin{aligned}
\langle O\rangle= & \int d \phi_{B}\left(V\left(\phi_{B}\right)+I\left(\phi_{B}\right)\right) O\left(\phi_{B}\right) \times \\
& \times \int d \phi_{1} \frac{D\left(\phi_{B}, \phi_{1}\right)}{B\left(\phi_{B}\right)} \Theta\left(\mu_{P S}^{2}-t\right)+ \\
& +\int d \phi_{R} R\left(\phi_{R}\right) O\left(\phi_{R}\right)
\end{aligned}
$$

NLO matched to parton shower

What causes this mismatch?

MC@NLO general expression:

$$
\begin{aligned}
\langle O\rangle= & \int d \phi_{B}\left(B\left(\phi_{B}\right)+V\left(\phi_{B}\right)+I\left(\phi_{B}\right)\right) O\left(\phi_{B}\right) \times \\
& \times\left[\Delta\left(t_{0}, \mu_{P S}^{2}\right)+\int d \phi_{1} \Delta\left(t, \mu_{P S}^{2}\right) \frac{D\left(\phi_{B}, \phi_{1}\right)}{B\left(\phi_{B}\right)} \Theta\left(\mu_{P S}^{2}-t\right) \Theta\left(t-t_{0}\right)\right]+\quad \text { S events } \\
& +\int d \phi_{R} H\left(\phi_{R}\right) O\left(\phi_{R}\right)
\end{aligned}
$$

For observables insensitive to Born kinematical configuration and focussing on the high energy tail

$$
\begin{aligned}
\langle O\rangle= & \int d \phi_{B}\left(V\left(\phi_{B}\right)+I\left(\phi_{B}\right)\right) O\left(\phi_{B}\right) \times \\
& \times \int d \phi_{1} \frac{D\left(\phi_{B}, \phi_{1}\right)}{B\left(\phi_{B}\right)} \Theta\left(\mu_{P S}^{2}-t\right)+ \\
& +\int d \phi_{R} R\left(\phi_{R}\right) O\left(\phi_{R}\right)
\end{aligned}
$$

To recover the real emission result the first term in the r.h.s. must be negligible. This requirement is spoiled if the following conditions are met:

- Large K factor
- Non-negligible splitting function in that energy region
- Energy region accessible to the parton shower

What comes next?

- Study parton shower matching uncertainty for other processes, e.g. $g g \rightarrow V V$:

What comes next?

- Study parton shower matching uncertainty for other processes, e.g. $g g \rightarrow V V$:
- Including Top quark effect in the loop using high and low energy approximation
[Davies, J. et al.: 2002.05558]

What comes next?

- Study parton shower matching uncertainty for other processes, e.g. $g g \rightarrow V V$:
- Including Top quark effect in the loop using high and low energy approximation
[Davies, J. et al.: 2002.05558]
- Resummation effects and relative uncertainties using dedicated Sherpa module

Conclusions

- Moving towards LHC@HL makes the good modeling of these processes an important step for future high precision studies and BSM analyses
- These processes suffer from theoretical uncertainties more than others. In particular for what concern the parton shower matching uncertainties
- A more detailed study of these uncertainties is needed to have a reliable MC@NLO and solutions to improve the showered sample are required

Thanks for the

attention

[^0]: Particularly suitable for BSM studies and SM precision studies

