SingularPhasespace and helicity recycling in MadGraph

Kiran Ostrolenk kiran.ostrolenk@manchester.ac.uk

University of Manchester 🕯

Outline

- SingularPhasespace
 - Matching algorithms
 - Diagnosing issues
 - Enter SingularPhasespace

2 Helicity recycling

$$d\sigma^{NLO} = d\phi_n [B + V] + d\phi_{n+1} R$$

- The terms labelled *S* are called the Subtraction Dipoles
- $lue{}$ They are defined to mimic the singular behaviour of R and V
- When all integrands are finite a Monte Carlo simulation can be performed

$$d\sigma^{NLO} = d\phi_n [B+V] + d\phi_{n+1} R$$
$$= d\phi_n [B+V] + d\phi_{n+1} R + d\phi_{n+1} S - d\phi_{n+1} S$$

- The terms labelled *S* are called the Subtraction Dipoles
- $lue{}$ They are defined to mimic the singular behaviour of R and V
- When all integrands are finite a Monte Carlo simulation can be performed

$$d\sigma^{NLO} = d\phi_n [B+V] + d\phi_{n+1} R$$

$$= d\phi_n [B+V] + d\phi_{n+1} R + d\phi_{n+1} S - d\phi_{n+1} S$$

$$= d\phi_n \left[B + V + \int_{\phi_1} S \right] + d\phi_{n+1} [R-S]$$

- The terms labelled *S* are called the Subtraction Dipoles
- $lue{}$ They are defined to mimic the singular behaviour of R and V
- When all integrands are finite a Monte Carlo simulation can be performed

$$d\sigma^{Matched} = PS_1 \otimes d\phi_n \left[B + V + \int_{\phi_1} S \right]$$
$$+ PS_1 \otimes d\phi_{n+1} \left[P - S \right]$$
$$+ PS_2 \otimes d\phi_{n+1} \left[R - P \right]$$

- V, R, S and P are made of many terms
- Need to consistently handle all of them
- What happens when something goes wrong?

Current diagnosis tools

- Lower values on x-axis means more singular events
- The more singular an event the closer $\frac{S}{R}$ should be to 1
- Points are smeared because of randomised momenta

Example issue

- No longer seeing convergence
- Difficult to extract any further information though
- Kinematic information about each point is lost

The SingularPhasespace approach

- Take a momentum configuration
- Approach singular limit, keeping as much the same as possible
- Still need to conserve momentum and keep everything on-shell
- Use tilde transformations (TT):

3 particles
$$\xrightarrow{\mathsf{TT}}$$
 2 particles

2 particles
$$\xrightarrow{\text{Inverted TT } (z, k_{\perp}, \phi)}$$
 3 particles

Example issue again

- Converges to a constant factor off one
- Scale choice: ŝ
- ŝ is also constant across the simulation 🤔

Example issue again

- Converges to a constant factor off one
- Scale choice: ŝ
- ŝ is also constant across the simulation 👺

SingularPhasespace

SingularPhasespace can also be used to check everything is working:

- Generate random momenta
- Step into singular limit
- Check for suspicious data
- Repeat

Lower CPU and disk space cost than just waiting for a random generation to reach interesting phasespace.

Matrix elements in MadGraph

- MadGraph uses the helicity amplitude basis, which expresses amplitudes in terms of products of spinors instead of momenta.
- This simplifies the number of terms to calculate and makes it easier to handle interference between diagrams.
- Final result in terms of helicity of external particles, so need to loop over all possible combinations.

Loop over helicity

Loop over helicity

- The amplitude is the sum of all possible helicity combinations
- Each leg can be helicity +1 or -1
- $lue{}$ There are 8 possible combinations where red leg has helicity +1
- Aim of project: Only calculate spinors/wavefunctions once and store them to RAM
- Already seen $\sim 40\%$ speed increase for $2 \rightarrow 2$

Summary

SingularPhasespace

- Take an event and push it into a singular limit
- Can be used to search for and diagnose issue in matching algorithms

Helicity recycling

- Store spinors and wavefunctions to RAM instead of repeatedly calculating them
- Hope to apply to both LO and NLO calculations

Thanks!