

Hadronic Rescattering in Pythia

Marius Utheim, Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics Lund University

MCnet virtual meeting, 30 April

Outline

The rescattering algorithm

Low energy processes

Results

Outline

The rescattering algorithm

Low energy processes

Results

What is rescattering?

When do two hadrons interact?

The probability of an interaction depends on the cross section σ and the impact parameter b

The characteristic range of the interaction is $b_{\rm crit}=\sqrt{\sigma/\pi}$ The cross section σ depends on the particle types and the center-of-mass energy.

Outline

The rescattering algorithm

Low energy processes

Results

What happens when two hadrons collide?

Two-body systems

For elastic scattering, we only need to pick outgoing momenta.

We sample
$$t = (p_{\rm out} - p_{\rm in})^2$$
 according to

$$d\sigma_{\rm el} \propto e^{B_{\rm el}t} dt$$

$$B_{\rm el} = 2b_A + 2b_B + 2\alpha' \ln\left(\frac{s}{s_0}\right)$$

Two-body systems

For elastic scattering, we only need to pick outgoing momenta. We sample $t=(p_{\rm out}-p_{\rm in})^2$ according to

$$d\sigma_{\rm el} \propto e^{B_{\rm el}t} dt$$

$$B_{\rm el} = 2b_A + 2b_B + 2\alpha' \ln\left(\frac{s}{s_0}\right)$$

For diffractive scattering, $AB \to XB$, we also need to pick the diffractive mass M_X , i.e. rest energy of the system X.

$$\mathrm{d}\sigma_{XB} \propto \left(1 - \frac{M_X^2}{s}\right) \frac{\mathrm{d}M_X^2}{M_X^2} \, e^{B_{XB}t} \, \mathrm{d}t$$

$$B_{XB} = 2b_B + 2\alpha' \ln \left(\frac{s}{M_X^2}\right)$$

For annihilation and non-diffractive systems, strings are formed between colour-anticolour pairs.

For annihilation and non-diffractive systems, strings are formed between colour-anticolour pairs.

The evolution of a string is defined by the momenta of each endpoint (quark or diquark).

1. Determine the configuration of colours and anticolours.

For annihilation and non-diffractive systems, strings are formed between colour-anticolour pairs.

- 1. Determine the configuration of colours and anticolours.
- 2. For each hadron, pick momenta for the constituents.

For annihilation and non-diffractive systems, strings are formed between colour-anticolour pairs.

- 1. Determine the configuration of colours and anticolours.
- 2. For each hadron, pick momenta for the constituents.
 - p_{\perp} is chosen according to a Gaussian with $\left\langle p_{\perp}^{2}\right\rangle \approx 0.35~\mathrm{GeV^{2}}.$

For annihilation and non-diffractive systems, strings are formed between colour-anticolour pairs.

- 1. Determine the configuration of colours and anticolours.
- 2. For each hadron, pick momenta for the constituents.
 - ▶ p_{\perp} is chosen according to a Gaussian with $\langle p_{\perp}^2 \rangle \approx 0.35 \text{ GeV}^2$.
 - p_z is more complicated, and is found using expressions for the momentum fraction in terms of light cone momenta $p^\pm=E\pm p_z.$

For annihilation and non-diffractive systems, strings are formed between colour-anticolour pairs.

- 1. Determine the configuration of colours and anticolours.
- 2. For each hadron, pick momenta for the constituents.
 - p_{\perp} is chosen according to a Gaussian with $\langle p_{\perp}^2 \rangle \approx 0.35 \ {\rm GeV^2}.$
 - ho_z is more complicated, and is found using expressions for the momentum fraction in terms of light cone momenta $p^\pm=E\pm p_z$.
- 3. Adjust configuration if it is invalid, e.g. if it violates energy conservation or it cannot produce new particles

Cross sections

Based on UrQMD (arXiv:nucl-th/9803035)

Cross sections

Based on UrQMD (arXiv:nucl-th/9803035)

Cross sections

Based on work by Pelaez, Rodas, Ruiz de Elvira et al. (arXiv:1102.2183, arXiv:1907.13162, arXiv:1602.08404)

Outline

The rescattering algorithm

Low energy processes

Results

Rescattering rates

Rescattering rates

incoming	rate	incoming	rate
$\pi + \pi$	12.63	K + N	0.39
$\pi + \rho$	4.59	$\rho + \rho$	0.38
$\pi + K$	3.84	$\rho + N$	0.36
$\pi + N$	3.44	$\rho + \omega/\phi$	0.34
$\pi + \omega/\phi$	2.08	$ ho + \eta/\eta'$	0.30
$\pi + \eta/\eta'$	1.80	$\pi + f_0(500)$	0.29
$\pi + K^*$	1.33	$K + \omega/\phi$	0.27
$\pi + \Delta$	1.10	K + K	0.26
$\rho + K$	0.54	$\pi + \Lambda$	0.25
$\pi + \Sigma$	0.46	Other	3.70
N + N	0.46		
$K + K^*$	0.41	Total	39.22

process	rate
resonant	17.80
elastic	14.08
nondiffractive	6.92
annihilation	0.49
diffractive	0.05

Rescatter rates, per inelastic event at 13 TeV $_{\scriptsize \text{\tiny 0}}$ $_{\scriptsize \text{\tiny 0}}}$ $_{\scriptsize \text{\tiny 0}}$ $_{\scriptsize \text{\tiny 0}}}$ $_{\scriptsize \text{\tiny 0}}$ $_{\scriptsize \text{\tiny $0$$

Rescattering invariant mass

p_{\perp} spectra

Mean p_{\perp}

η spectra

Model variations

Rescattering can partly explain some discrepancies with data, e.g. p_{\perp} , but corrections from other mechanisms are needed.

- Rescattering can partly explain some discrepancies with data, e.g. p_{\perp} , but corrections from other mechanisms are needed.
- ▶ When the first version is done, the natural next step is looking at rescattering in Angantyr.

- Rescattering can partly explain some discrepancies with data, e.g. p_{\perp} , but corrections from other mechanisms are needed.
- ▶ When the first version is done, the natural next step is looking at rescattering in Angantyr.
- ▶ Pythia can now simulate collisions all the way down to the threshold. This opens up for other applications, such as studying cosmic rays or in detector simulations like Geant4.

- Rescattering can partly explain some discrepancies with data, e.g. p_{\perp} , but corrections from other mechanisms are needed.
- When the first version is done, the natural next step is looking at rescattering in Angantyr.
- ▶ Pythia can now simulate collisions all the way down to the threshold. This opens up for other applications, such as studying cosmic rays or in detector simulations like Geant4.
- ▶ The code will (hopefully) be released in Pythia 8.303.