Boosted Tops.

Jack Y. Araz, Andy Buckley, Benjamin Fuks

Concordia University — University of Glasgow — Sorbonne Université

Göttingen University (virtually) ${\sf Aptil} \ \ 30^{\rm th}, \ 2020$

- > Introduction
 - Motivation
 - Why tops? Why boosted?
- > Top Tagging
 - How does it work and why do we need it?
 - HEPTopTagger
- > Current Status & Direction

- > Introduction
 - Motivation
 - Why tops? Why boosted?
- > Top Tagging
 - How does it work and why do we need it?
 - HEPTopTagger
- > Current Status & Direction

Motivation

- No new physics yet (yes, this is a motivation!)
- > Very soon we will be drowning in data from LHC!
- > Q : What can we learn from this data?
- $> \mathbb{Q}$: How to build observables to hunt down new physics? Differential observables, boosted signatures etc.
- > SM is only valid upto $\mathcal{O}(\mathrm{TeV})$ scale. More comprehensive model needed to supersede the SM beyond TeV.
- > One can expand the effective Lagrangian via higher order terms since they are decoupled at lower energies.

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_1 + \frac{1}{\Lambda^2} \mathcal{L}_2 + O(\Lambda^{-4}) + h.c. \quad , \quad \mathcal{L}_n = \sum_i C_i O_i$$

Introduction: Why top? Why boosted?

Top Quarks

- Due to their large coupling to the Higgs boson and its weak scale mass, top quark is a major laboratory to understand the nature of EWSB.
- > Important production modes: $\underline{t}\overline{t}$, $t\overline{t}V$, $t\overline{t}H$, single top+jets
- If the new physics lies at a large energy scale, its indirect effects can be parametrized by higher-dimensional operators.

Introduction: Why top? Why boosted?

Top Quarks

- Due to their large coupling to the Higgs boson and its weak scale mass, top quark is a major laboratory to understand the nature of EWSB.
- > Important production modes: $\underline{t}\overline{t}$, $t\bar{t}V$, $t\bar{t}H$, single top+jets
- If the new physics lies at a large energy scale, its indirect effects can be parametrized by higher-dimensional operators.

$$O_{tG} = y_t g_s(\bar{t}_L \sigma^{\mu\nu} T_a t_R) \tilde{\phi} G^a_{\mu\nu}$$

Introduction: Why top? Why boosted?

Top Quarks

- Due to their large coupling to the Higgs boson and its weak scale mass, top quark is a major laboratory to understand the nature of EWSB.
- > Important production modes: $\underline{t}\overline{t}$, $t\overline{t}V$, $t\overline{t}H$, single top+jets
- If the new physics lies at a large energy scale, its indirect effects can be parametrized by higher-dimensional operators.

$$\begin{split} O_{tG} &= y_t g_s(\bar{t}_L \sigma^{\mu\nu} T_a t_R) \tilde{\phi} G^a_{\mu\nu} \\ O_G &= f_{abc} G^{a\nu}_{\mu} G^{b\rho}_{\nu} G^{c\mu}_{\rho} \quad , \quad O_{\phi G} = \frac{1}{2} (\phi^{\dagger} \phi) G^a_{\mu\nu} G^{a\mu\nu} \\ O^{33}_{Dd} &= (\bar{t}_L D_{\mu} b_R) D^{\mu} \phi \quad , \quad O^{33}_{\bar{D}d} &= (D_{\mu} \bar{t}_L b_R) D^{\mu} \phi \\ O_{tW} &= (\bar{q} \sigma^{\mu\nu} \tau^I t) \tilde{\phi} W^I_{\mu\nu} \quad , \quad O_{4q} \ (7 \ \text{operators}) \end{split}$$

How does EFT work?

• SMEFT Amplitude

How does EFT work?

• SMEFT Amplitude

$$|\mathcal{M}|^2 = \left| \frac{1}{2} \frac{1}{2$$

- > Introduction
 - Motivation
 - Why tops? Why boosted?
- > Top Tagging
 - How does it work and why do we need it?
 - HEPTopTagger
- > Current Status & Direction

Top Tagging

[McLean, 2016]

Why cluster?

- > A typical collision event has a substantial amount of collimated particles
 - > Detector can not identify each of them
 - > There is not much information in every single particle.

Top Tagging

Substructure tools in the market

- Mass Grooming & Filtering: Reduces contamination from ISR and pile-up
- > Pruning: Rejects soft & large angle constituents during iterative reclustering.
- > Trimming: Recluster while keeping constituents with $p_{T,i}/p_T = X$.
- > Soft Drop: Removes wide angle soft radiation
- > Hopkins/CMS, template tagger, BDRS (mostly for Higgs)...

Softdrop

Trimming

[CMS-JME-15-002]

[ATL-PHYS-PUB-2015-053]

Top Tagging

Substructure tools in the market

- Mass Grooming & Filtering: Reduces contamination from ISR and pile-up
- > Pruning: Rejects soft & large angle constituents during iterative reclustering.
- > Trimming: Recluster while keeping constituents with $p_{T,i}/p_T = X$.
- > Soft Drop: Removes wide angle soft radiation
- > Hopkins/CMS, template tagger, BDRS (mostly for Higgs)...

Fun but less analytic

- > Event and shower deconstruction.
- > Deep Neural Networks

HEPTopTagger

FatJet (C/A with R=1.5 (1.8) and $p_T^{min}=200\ (150)$ GeV)

HEPTopTagger

HEPTopTagger

[Marzani,Soyez,Spannowsky; 2019]

- > Introduction
 - Motivation
 - Why tops? Why boosted?
- > Top Tagging
 - How does it work and why do we need it?
 - HEPTopTagger
- > Current Status & Direction

Current Status & Direction

Plan for EFT analysis

- > Theoretical uncertainties: scale & PDF
- > QCD shower model (pythia, herwig etc.)
- > Experimental biases
 - > Rivet [Buckley, Kar, Nordstorm; 2020]
 - > MadAnalysis 5 [JYA, Fuks; soon]

Plan for public sorftware

- > Multi-Cluster jet analysis with MadAnalysis 5 (complete v1.9)
- > HEPTopTagger integration for public use
- > Cross validation of both frameworks

Current Status & Direction

Plan for EFT analysis

- > Theoretical uncertainties: scale & PDF
- > QCD shower model (pythia, herwig etc.)
- > Experimental biases
 - > Rivet [Buckley, Kar, Nordstorm; 2020]
 - > MadAnalysis 5 [JYA, Fuks; soon]

Plan for public sorftware

- > Multi-Cluster jet analysis with MadAnalysis 5 (complete v1.9)
- > HEPTopTagger integration for public use
- > Cross validation of both frameworks

Thanks for your time, keep safe!

