My three-month internship at IBA

B. Cabouat in collaboration with F. Stichelbaut

Ion Beam Applications (IBA)

- Around 1500 employees, offices in Belgium, USA, Germany, China and Russia.
- 4 business units:
 - Proton therapy solutions (worldwide leader)
 - Dosimetry solutions
 - RadioPharma solutions (260 cyclotrons produced)
 - Industrial and sterilization solutions (250 electron and proton accelerators)
- Headquarters in Louvain-la-Neuve, Belgium.

My project: activation calculations for the KIUBE

- KIUBE: 18 MeV cyclotron for the production of radioisotopes (Fluorine 18, Oxygen 15, Gallium 68, ...)
- \triangleright Beam current from 100 μ A to 300 μ A, with 8 exit ports.
- ightharpoonup Ex: production of **fluorine 18**: proton beam on enriched water $H_2^{18}O$

$${}_{8}^{18}O + {}_{1}^{1}p \rightarrow {}_{9}^{18}F + {}_{0}^{1}n + \gamma$$

> Useful for **PET** (positron emission tomography): ${}^{18}_9{
m F}
ightarrow {}^{18}_8{
m O} + {}^0_1{
m e}^+$

My project: activation calculations for the KIUBE

KIUBE: 18 MeV cyclotron for the production of radioisotopes (Fluorine 18, Oxygen 15, Gallium 68, ...)

- \triangleright Beam current from 100 μ A to 300 μ A, with 8 exit ports.
- \succ Ex: production of **fluorine 18**: proton beam on enriched water $H_2^{18}O$ What happens to those particles?

$${}_{8}^{18}O + {}_{1}^{1}p \rightarrow {}_{9}^{18}F + {}_{0}^{1}n + \gamma$$

> Useful for **PET** (positron emission tomography): ${}^{18}_9{
m F}
ightarrow {}^{18}_8{
m O} + {}^0_1{
m e}^+$

My project: activation calculations for the KIUBE

Need to **track** the **particles** (neutrons, photons and electrons) passing through the materials of the KIUBE.

Need to study the impact of those particles on the materials: activation.

MCNPX

- Monte-Carlo (MC) code that models the **transport of neutral particles** (NP) through a medium. Tracks neutrons and photons, but also electrons, protons, ...
- Created and maintained by Los Alamos National Laboratory.
- A lot of physics included: elastic and inelastic scattering, neutron capture, photon absorption, ...
- Works with input files where one specifies:
 - Geometry: surfaces and cells
 - Materials of the cells: density, isotopic composition, cross-section library
 - Source of primary particles
 - Observables to be calculated (tallies)

MCNPX: an example

F4 tally: neutron (or photon) fluence averaged over the volume of the bulk (in 1 / cm²):

$$F4 = \frac{1}{V} \int_{V} dV \int_{E} dE \int_{4\pi} d\Omega \Phi(\mathbf{r}, E, \mathbf{\Omega})$$

Energy and angular distribution of the fluence as a function of the position

MCNPX estimates the F4 tally as:

Neutron transport through the cells of the KIUBE

- The geometry of the KIUBE was implemented inside MCNPX and divided into 235 cells.
- Use a source of 18 MeV protons on enriched water.
- We studied the transport of the neutrons through all the cells of the KIUBE. Use F4 tally on each cell (with energy bins) to get the neutron fluence.

Neutron transport through the cells of the KIUBE

Cell 12012: cavity of the radio-frequency system of the cyclotron. Made of copper with density 8.96 g/cm³.

Thermal peak: neutrons lost some kinetic energy by recoiling against the atoms of the medium.

FISPACT II

- > Deterministic code that solves numerically problems of **activation**.
- > The output is a **time-dependent inventory** of all the **radioisotopes** present in the material.
- Works with input files where one specifies:
 - Material: density, isotopic composition, cross-section library
 - Source of incident particles
 - Irradiation and cooling times.
- No geometry involved: the material is assumed to be homogeneous and infinite.

FISPACT II

Number of a given isotope in a material follows:

- Irradiation phase: $S \neq 0$ $A(t) = S(1 e^{-\lambda t})$
- $\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N(t) + S$ Decay rate Source term (activation rate)
- Cooling phase: S=0 $A(t)=S\left(1-e^{-\lambda t_{\mathrm{irr}}}\right)e^{-\lambda(t-t_{\mathrm{irr}})}$

Activity: number of decays per unit time

$$A(t) = \lambda N(t)$$

FISPACT II

➤ In fact:

System of nested equations:

Activation of the KIUBE

- The cells of the KIUBE are irradiated by neutrons. Use the energy spectra from MCNPX as energy distributions for the sources.
- > **Isotopic vector** calculated for each cell of the KIUBE.

Clearance index:

$$CI_i(t) = \frac{A_i(t)}{A_i^{ref}}$$

Safety standards:

$$\mathrm{CI}_i < 1$$
 \rightarrow isotope i can be considered as **non-radioactive**

Summary¹: activation calculations

¹This work has received funding from the European Union's Horizon 2020 research and innovation programme as part of the Marie Sklodowska-Curie Innovative Training Network MCnetITN3 (grant agreement no. 722104).

My experience: it was interesting to

- Work in a company (different atmosphere, pace, expectations).
- > Apply my theoretical knowledge of particle physics to an industrial case.
- ➤ Learn new methods of variance reduction and how to better assess errors (cf. MCNP primer), even though I was already familiar with Monte-Carlo methods.
- Set the safety standards as a priority in order to validate my results.
- Deal with different softwares and interface them.

References

- > J. K. Shultis and R. E. Faw, An MCNP Primer.
- M. Fleming, T. Stainer, M. Gilbert, The Fispact-II User Manual, 2018.