

Color Decompositions from Unitarity

Alexander OCHIROV ETH Zürich

based on 1908.02695 with Ben PAGE

Amplitudes 2020, May 15 Zoom @ Brown University

Aim of this talk

"Proper" color decompositions of the form

$$\begin{aligned} \mathcal{A}(1,X,n) &= \sum_{\sigma \in \mathcal{B}_X^{1,n}} C(1,\sigma,n) A(1,\sigma,n) \\ &= \sum_{\sigma \in \mathcal{B}_X^{1,n}} C\left(\underbrace{1 \quad \cdots \quad n}_{\sigma} \right) A\left(\underbrace{1 \quad \cdots \quad n}_{\sigma} \right) \end{aligned}$$

"stretched" by 2 arb. chosen labels $1 \xleftarrow{} n$

$$\begin{split} \mathcal{B}_X^{1,n} & -\text{ basis of } \leq (n-2)! \text{ permutations} \\ & \text{indep. under KK relations} \\ A(1,\alpha,n,\beta) = (-1)^{|\beta|} \sum_{\sigma \in \alpha \sqcup \beta^\mathsf{T}} A(1,\sigma,n) \end{split}$$

DDM decomposition

Del Duca, Dixon, Maltoni '99

$$\begin{aligned} \mathcal{A}_n &= \sum_{\sigma \in S_{n-2}} \tilde{f}^{a_1 a_{\sigma(2)} b_1} \tilde{f}^{b_1 a_{\sigma(3)} b_2} \dots \tilde{f}^{b_{n-4} a_{\sigma(n-2)} b_{n-3}} \tilde{f}^{b_{n-3} a_{\sigma(n-1)} a_n} \\ &\times A(1, \sigma(2), \dots, \sigma(n-1), n) \end{aligned}$$
$$&= \sum_{\sigma \in S_{n-2}} C \begin{pmatrix} \sigma^{(2) \sigma(3)} & \dots & \sigma^{(n-1)} \\ 1 & \sigma^{(2) \sigma(3)} & \dots & \sigma^{(n-1$$

I.e. for pure gluons

$$C\begin{pmatrix} \sigma \\ \ddots \\ 1 & \circ \\ 1$$

C.f. standard SU(N) trace decomposition

$$\mathcal{A}_{n} = \sum_{\sigma \in S_{n-1}} \{ \operatorname{Tr}[T^{a_{1}}T^{a_{\sigma(2)}} \dots T^{a_{\sigma(n)}}] + (-1)^{n} \mathsf{c.c.} \} A(1, \sigma(2), \dots, \sigma(n))$$

Color Feynman rules

$$\begin{split} \mathsf{SU}(N): \quad T^a_{i\bar\jmath}T^a_{k\bar l} = \delta_{i\bar l}\delta_{k\bar\jmath} - \frac{1}{N_c}\delta_{i\bar\jmath}\delta_{k\bar l} & -\!\!\!- \text{not used here directly} \\ & \text{underlie color ordering for } A(\dots) \end{split}$$

Outline

1. Preliminaries

- 2. Color decompositions with flavored matter
- 3. Loops at full color
- 4. Summary & outlook

Color Decompositions with Flavored Matter^{*}

5-pt *qg*-stretch example

Factorization limits fix color factors:

5-pt qg-stretch example

Factorization limits fix color factors:

 \Rightarrow Decomposition:

8 / 25

Observations from 5-pt example

- Presence of fact. channels in $\mathcal{A}_{n,k}$ constrain basis of $A(\ldots)$
- Factorization allows color recursion if lower-pt known
- Comb-like structures unless stretch by quarks of same flavor
- Luckily, $q\bar{q}$ stretch most studied (apart from pure gluons)

Like-flavor $q\bar{q}$ stretch **Basis:**

 $\text{Consider } A(\underline{1},\overline{2},\sigma) = A(\overline{2},\sigma,\underline{1}) \text{: stretch by } \overline{2} \longleftarrow \text{ and } \longrightarrow \underline{1}$

 $\mathcal{B}^{2,1}_{n,k} = \left\{ \sigma \in [\text{bracket structures}]_{k-1} \times [\text{gluon insertions}]_{n-2k} \right\}$

• e.g. pure-quark permutation $A(\underline{2}, \underline{3}, \underline{5}, \overline{6}, \underline{7}, \overline{8}, \overline{4}, \underline{1})$

- quark-bracket orientations chosen but fixed
- gluon are allowed everywhere (except between $\underline{1}$ and $\overline{2}$)

Like-flavor $q\bar{q}$ stretch **Basis**:

 $\text{Consider } A(\underline{1},\overline{2},\sigma) = A(\overline{2},\sigma,\underline{1}) \text{: stretch by } \overline{2} \longleftarrow \text{ and } \longrightarrow \underline{1}$

 $\mathcal{B}_{n,k}^{2,1} = \left\{ \sigma \in [\text{bracket structures}]_{k-1} \times [\text{gluon insertions}]_{n-2k} \right\}$

• e.g. pure-quark permutation $A(\overline{2}, \underline{3}, \underline{5}, \overline{6}, \underline{7}, \overline{8}, \overline{4}, \underline{1})$

▶ full Melia basis for
$$n = 6$$
, $k = 3$:

$$\begin{bmatrix} \{ \ \} \ \{ \ \} \ \end{bmatrix} \begin{bmatrix} \{ \ \} \ \{ \ \} \ \end{bmatrix} \begin{bmatrix} \{ \ \} \ \} \ \end{bmatrix} \begin{bmatrix} \{ \ \{ \ \} \ \} \ \end{bmatrix} \begin{bmatrix} \{ \ \{ \ \} \ \} \ \end{bmatrix} \\ A(\overline{2}, \underline{3}, \overline{4}, \underline{5}, \overline{6}, \underline{1}), A(\overline{2}, \underline{5}, \overline{6}, \underline{3}, \overline{4}, \underline{1}), A(\overline{2}, \underline{3}, \underline{5}, \overline{6}, \overline{4}, \underline{1}), A(\overline{2}, \underline{5}, \underline{3}, \overline{4}, \overline{6}, \underline{1}) \end{bmatrix}$$

- quark-bracket orientations chosen but fixed
- gluon are allowed everywhere (except between $\underline{1}$ and $\overline{2}$)

Decomposition:

Johansson, AO '15 proven by Melia '15

$$\mathcal{A}_{n,k} = \sum_{\sigma \in \mathcal{B}_{n,k}^{2,1}} C(\underline{1}, \overline{2}, \sigma) A(\underline{1}, \overline{2}, \sigma)$$

Like-flavor $q\bar{q}$ stretch Basis:

 $\begin{array}{l} \text{Consider } A(\underline{1},\overline{2},\sigma) = A(\overline{2},\sigma,\underline{1}) \text{: stretch by } \overline{2} \longleftarrow \text{ and } \longrightarrow \underline{1} \\ \\ \mathcal{B}_{n,k}^{2,1} = \left\{ \sigma \in [\text{bracket structures}]_{k-1} \times [\text{gluon insertions}]_{n-2k} \right\} \end{array}$

Decomposition:

Johansson, AO '15

$$\mathcal{A}_{n,k} = \sum_{\sigma \in \mathcal{B}_{n,k}^{2,1}} C(\underline{1}, \overline{2}, \sigma) A(\underline{1}, \overline{2}, \sigma)$$

$$C\left(\underbrace{\sigma}_{\underline{2} \to \underline{1}}\right) = (-1)^{k-1} [2|\sigma|1] \begin{vmatrix} g \to \Xi_{l(g)}^{a} \\ q \to \{q|T^{b} \otimes \Xi_{l(g)-1}^{b} \\ \overline{q} \to |q\} \\ \{q|T^{a}|\overline{q}\} = T_{i_{q}\overline{i}_{q}}^{a}, \qquad [2|T^{a}|1] = T_{\overline{i}_{2}i_{1}}^{a} = -T_{i_{1}\overline{i}_{2}}^{a} \\ \Xi_{l}^{a} = \sum_{r=1}^{l} \underbrace{\mathbb{I} \otimes \cdots \otimes \mathbb{I} \otimes \overline{T_{r}^{a} \otimes \mathbb{I} \otimes \cdots \otimes \mathbb{I} \otimes \overline{\mathbb{I}}}_{l} = \underbrace{\mathfrak{g}_{l}^{a}}_{q} + \underbrace{\mathfrak{g}_{l}^{a$$

Like-flavor $q\bar{q}$ stretch **Basis**:

 $\begin{array}{l} \text{Consider } A(\underline{1},\overline{2},\sigma) = A(\overline{2},\sigma,\underline{1}) \text{: stretch by } \overline{2} \longleftarrow \text{ and } \longrightarrow \underline{1} \\ \\ \mathcal{B}_{n,k}^{2,1} = \left\{ \sigma \in [\text{bracket structures}]_{k-1} \times [\text{gluon insertions}]_{n-2k} \right\} \end{array}$

Decomposition:

Johansson, AO '15

So far: gg stretch for pure YM [DDM] $q\bar{q}$ stretch for QCD [Melia+JO]

Want generic stretch:

$$\mathcal{A}(1,X,n) = \sum_{\sigma \in \mathcal{B}_X^{1,n}} C\left(\underbrace{1 \quad \cdots \quad n}_{n}\right) A\left(\underbrace{1 \quad \cdots \quad n}_{n}\right)$$

So far: gg stretch for pure YM [DDM] $q\bar{q}$ stretch for QCD [Melia+JO]

Want generic stretch:

$$\mathcal{A}(1,X,n) = \sum_{\sigma \in \mathcal{B}_X^{1,n}} C\left(\underbrace{1 \quad \cdots \quad n}_{n}\right) A\left(\underbrace{1 \quad \cdots \quad n}_{n}\right)$$

So far: gg stretch for pure YM [DDM] $q\bar{q}$ stretch for QCD [Melia+JO]

Want generic stretch:

$$\mathcal{A}(1,X,n) = \sum_{\sigma \in \mathcal{B}_X^{1,n}} C\left(\underbrace{1 \quad \cdots \quad n}_{n}\right) A\left(\underbrace{1 \quad \cdots \quad n}_{n}\right)$$

$$\sum_{\pi \in \mathcal{B}_{P}^{1,\bar{p}}} \sum_{\rho \in \mathcal{B}_{R}^{p,n}} C\left(\underbrace{1 \quad \cdots \quad \bar{p}}_{1} \right) C\left(\underbrace{p \quad \cdots \quad n}_{p} \right) A\left(\underbrace{1 \quad \cdots \quad \bar{p}}_{\bar{p}} \right) A\left(\underbrace{p \quad \cdots \quad n}_{p} \right) A\left(\underbrace{p \quad$$

Minimal example:

$$\mathcal{A}_{4,2} = C\begin{pmatrix} \overline{2} & & & \\ \underline{1} & & \underline{3} \\ \underline{1} & & \underline{4} \end{pmatrix} A\begin{pmatrix} \overline{2} & & & \\ \underline{1} & & \underline{4} \end{pmatrix} = C\begin{pmatrix} \underline{3} & & & \overline{4} \\ \overline{2} & & \underline{1} \end{pmatrix} A\begin{pmatrix} \underline{3} & & & \overline{4} \\ \overline{2} & & \underline{1} \end{pmatrix}$$

OK for qQ failure for $q\bar{q}$: no fact. channel

14/25

Arbitary stretches

Observation: length of all bases' must be Melia's **Skip to result:** allow flips for unclosed brackets

$$\frac{(n-2)!}{k!}$$

$$\mathcal{Q}_{F} = \bigcup_{f \in F} \bigcup_{E \in \mathbb{P}(F \setminus f)} \begin{cases} \{ f \} \oplus \pi \oplus (\bar{f}) \oplus \rho \mid (\pi, \rho) \in \mathcal{Q}_{E} \times \mathcal{Q}_{(F \setminus f) \setminus E} \} \\ \{ f \} \oplus \pi \oplus (\bar{f}) \oplus \rho \mid (\pi, \rho) \in \mathcal{Q}_{E} \times \overline{\mathcal{Q}}_{(F \setminus f) \setminus E} \} \\ \cup \{ (\bar{f}) \oplus \pi \oplus (f) \oplus \rho \mid (\pi, \rho) \in \mathcal{Q}_{E} \times \overline{\mathcal{Q}}_{(F \setminus f) \setminus E} \} \end{cases}$$

$$\mathcal{G}_{n-2k} = \left\{ \sigma \in \mathcal{S}_G \mid G = \{g_{2k+1}, \dots, g_n\} \right\}$$

Arbitary stretches

Observation: length of all bases' must be Melia's **Skip to result:** allow flips for unclosed brackets

$$\frac{(n-2)!}{k!}$$

$$\mathcal{Q}_{F} = \bigcup_{f \in F} \bigcup_{E \in \mathbb{P}(F \setminus f)} \left\{ \begin{array}{c} \{ f \} \oplus \pi \oplus (\overline{f}) \oplus \rho \mid (\pi, \rho) \in \mathcal{Q}_{E} \times \mathcal{Q}_{(F \setminus f) \setminus E} \} \\ \overline{\mathcal{Q}}_{F} = \bigcup_{f \in F} \bigcup_{E \in \mathbb{P}(F \setminus f)} \bigcup_{\substack{\{f\} \oplus \pi \oplus (\overline{f}) \oplus \rho \mid (\pi, \rho) \in \mathcal{Q}_{E} \times \overline{\mathcal{Q}}_{(F \setminus f) \setminus E} \} \\ \cup \left\{ (\overline{f}) \oplus \pi \oplus (f) \oplus \rho \mid (\pi, \rho) \in \mathcal{Q}_{E} \times \overline{\mathcal{Q}}_{(F \setminus f) \setminus E} \right\} \end{array}$$

$$\mathcal{G}_{n-2k} = \left\{ \sigma \in \mathcal{S}_G \mid G = \{g_{2k+1}, \dots, g_n\} \right\}$$

$$q\bar{q}: \qquad \mathcal{B}_{n,k}^{2,1} = \left\{ A(\bar{2},\sigma,\underline{1}) \mid \sigma \in \mathcal{Q}_{2(k-1)} \sqcup \mathcal{G}_{n-2k} \right\} \qquad \text{Melia '13}$$

$$qQ: \qquad \mathcal{B}_{n,k}^{1,4} = \left\{ A(\underline{1},\sigma,\overline{4}) \mid (\underline{1}) \oplus \sigma \oplus (\overline{4}) \in \overline{\mathcal{Q}}_{2k} \sqcup \mathcal{G}_{n-2k} \right\}$$

$$qg: \qquad \mathcal{B}_{n,k}^{1,n} = \left\{ A(\underline{1},\sigma,n) \mid (\underline{1}) \oplus \sigma \in \overline{\mathcal{Q}}_{2k} \sqcup \mathcal{G}_{n-2k} \right\} \qquad \left\} \text{ NEW}$$

$$gg: \quad \mathcal{B}_{n,k}^{n-1,n} = \left\{ A(n-1,\sigma,n) \mid \sigma \in \overline{\mathcal{Q}}_{2k} \sqcup \mathcal{G}_{n-2k-2} \right\}$$

Formal construction and proof of co-unitarity in 1908.02695

Distinct-flavor qQ stretch

$$\mathcal{B}_{n,k}^{1,4} = \left\{ A(\underline{1},\sigma,\overline{4}) \mid (\underline{1}) \oplus \sigma \oplus (\overline{4}) \in \overline{\mathcal{Q}}_{2k} \sqcup \mathcal{G}_{n-2k} \right\}$$

For perm.
$$(\underline{1}, \sigma, \overline{4}) = (\{1, \sigma_1, 2\}, \sigma_2, \{5, \sigma_3, 6\}, \sigma_4, \dots, \sigma_{2u-2}, \{3, \sigma_{2u-1}, 4\}) \Rightarrow$$

$$C\left(\underbrace{\sigma}_{1 \longrightarrow \overline{4}} \right) = C\left(\underbrace{\sigma}_{1 \longrightarrow \overline{4}} \right) =$$

e.g.
$$\mathcal{A}_{6,3} = C\left(\begin{array}{ccc} \frac{2}{2} & \frac{5}{6} & \overline{6} & \frac{3}{4} \\ 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & & & & \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \end{array}\right) A\left(\begin{array}{c} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac$$

Similarly: qg and gg stretches

$$\mathcal{B}_{n,k}^{1,n} = \left\{ A(\underline{1},\sigma,n) \mid (\underline{1}) \oplus \sigma \in \overline{\mathcal{Q}}_{2k} \sqcup \mathcal{G}_{n-2k} \right\}$$

$$C\left(\underbrace{\overset{\sigma}{\underbrace{1 \longrightarrow \mathcal{Q}}}}_{n}\right) = C\left(\underbrace{\overset{\pi}{\underbrace{1 \longrightarrow \mathcal{Q}}}}_{\underline{1} \longrightarrow \mathcal{Q}} \underbrace{\overset{q}{\underbrace{\rho}}}_{\underline{\rho}} \underbrace{\overset{\rho}{\underbrace{\rho}}}_{\underline{\rho}} \right), \quad \text{where} \quad \sigma = (\pi,\bar{q}\},\rho)$$

implicitly used @1-loop in Kälin '17

$$\mathcal{B}_{n,k}^{n-1,n} = \left\{ A(n-1,\sigma,n) \mid \sigma \in \overline{\mathcal{Q}}_{2k} \sqcup \mathcal{G}_{n-2k-2} \right\}$$

$$C\left(\underbrace{\stackrel{\sigma}{\underset{n-1 \text{ vace } 0}{\underset{n-1 \text{ vace } 0}{\underset$$

Similarly: qg and gg stretches

$$\mathcal{B}_{n,k}^{1,n} = \left\{ A(\underline{1},\sigma,n) \mid (\underline{1}) \oplus \sigma \in \overline{\mathcal{Q}}_{2k} \sqcup \mathcal{G}_{n-2k} \right\}$$

$$C\left(\underbrace{\stackrel{\sigma}{\underset{1 \to \infty}{\longrightarrow} n}}_{n} \right) = C\left(\underbrace{\stackrel{\pi}{\underset{1 \to \infty}{\longrightarrow}}_{n} \stackrel{\overline{q}}{\underset{n}{\longrightarrow}}_{n} \stackrel{\rho}{\underset{n}{\longrightarrow}}_{n} \right), \quad \text{where} \quad \sigma = (\pi, \overline{q}\}, \rho)$$

implicitly used @1-loop in Kälin '17

$$\mathcal{B}_{n,k}^{n-1,n} = \left\{ A(n-1,\sigma,n) \mid \sigma \in \overline{\mathcal{Q}}_{2k} \sqcup \mathcal{G}_{n-2k-2} \right\}$$

$$C\left(\underbrace{\sigma}_{n-1 \text{ cose } n} \right) = C\left(\underbrace{\sigma}_{n-1 \text{ cose } n} \right) = C\left(\underbrace{\sigma}_{n-1 \text{ cose } n} \right), \quad \text{where} \quad \sigma = \left(\pi, \{q, \rho\right)$$

NB! Induction via other valid fact. channel possible

Tree-level summary:

- All $(1 \leftarrow \text{stretches} \rightarrow n)$ intertwined by mutual factorization
- All decompositions but qq̄ implied by factorization dividing 1 and n
 for free once amp. bases are chosen co-unitary
- Fortunately, $q\bar{q}$ and pure glue previously known [DDM, Melia + JO]

Loops at Full Color

Full-color 2-loop amplitude in pure YM

$$\begin{split} \mathcal{A}_{5}^{(2)} &= \\ \sum_{\sigma \in S_{5}} \sigma \circ I \left[C \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{1}_{3}^{1} \end{pmatrix} \left\{ \frac{1}{2} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{1}_{3}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{1}_{3}^{1} \end{pmatrix} + \frac{1}{2} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{1}_{3}^{1} \end{pmatrix} + \frac{1}{2} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{1}_{3}^{1} \end{pmatrix} + \frac{1}{2} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{1}_{3}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{1}_{2}^{1} \end{pmatrix} + \frac{1}{2} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{1}_{2}^{1} \end{pmatrix} + \frac{1}{2} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{1}_{2}^{1} + 5 \\ 4 \end{pmatrix} \underbrace{1}_{3}^{1} \end{pmatrix} \right\} \\ &+ C \left(5 \underbrace{- \underbrace{- \underbrace{+ 1}_{3}}_{3}^{1} \right) \left\{ \frac{1}{2} \Delta \left(5 \underbrace{- \underbrace{+ 1}_{3}}_{4}^{1} \right) + \Delta \left(5 \underbrace{- \underbrace{+ 1}_{3}}_{3}^{1} \right) + \Delta \left(5 \underbrace{- \underbrace{- \underbrace{+ 1}_{3}}_{4}^{1} \right) \right\} \\ &+ \frac{1}{2} C \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\ 4 \end{pmatrix} \underbrace{- \underbrace{+ 1}_{2}^{1} \end{pmatrix} + \Delta \begin{pmatrix} 5 \\$$

Integrated by Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zoia '19

General color construction

Badger, Mogull, AO, O'Connell '15 Methodology in AO, Page '16

Full color within unitarity/integrand reduction:*

$$\mathcal{A}_n^{(L)} = \sum_{i \in \mathsf{KK-indep. 1Pl graphs}} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{C_i \,\Delta_i}{S_i \prod_{l \in i} D_l}$$

e.g. for pure YM:

Bern, Dixon, Dunbar, Kosower '94; Britto, Cachazo, Feng '04; Ossola, Papadopoulos, Pittau '06; Mastrolia, Mirabella, Ossola, Peraro '12; Badger, Frellesvig, Zhang '12; Bourjaily, Herrmann, Trnka '17 [Enrico's talk]_{20 / 25}

General color construction

Badger, Mogull, AO, O'Connell '15 Methodology in AO, Page '16

Full color within unitarity/integrand reduction:*

$$\mathcal{A}_n^{(L)} = \sum_{i \in \mathsf{KK-indep. 1Pl graphs}} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{C_i \,\Delta_i}{S_i \prod_{l \in i} D_l}$$

e.g. for pure YM at 2 loops:

Bern, Dixon, Dunbar, Kosower '94; Britto, Cachazo, Feng '04; Ossola, Papadopoulos, Pittau '06; Mastrolia, Mirabella, Ossola, Peraro '12; Badger, Frellesvig, Zhang '12; Bourjaily, Herrmann, Trnka '17 [Enrico's talk]_{21/25}

1 loop with matter

3 types of vertices:

fermionic - may be replaced by + for scalars

n-pt 1-loop example

 $\mathcal{A}_{n,1}^{(1)}$ in QCD: 2 quarks & (n-2) gluons; NB! arrows are fermionic \Rightarrow bubble color-dressed numerators decompose as

$$\begin{split} \frac{1}{2}\tilde{\Delta}\begin{pmatrix}\bar{2}\\\underline{1}\end{pmatrix}^{\bullet} & \overset{\bullet}{\underset{n}{\operatorname{cons}}} \overset{\bullet}{\underset{n}{\operatorname{ch}}} = \sum_{\sigma \in S_{n-2}} C\begin{pmatrix}\bar{2}\\\underline{1}\end{pmatrix}^{\bullet} & \overset{\bullet}{\underset{n}{\operatorname{ch}}} \overset{\sigma(3)}{\underset{n}{\operatorname{ch}}} & \Delta\begin{pmatrix}\bar{2}\\\underline{1}\end{pmatrix}^{\bullet} & \overset{\bullet}{\underset{n}{\operatorname{ch}}} & \overset{\bullet}{\underset{n}{\operatorname{ch}}} \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} & \Delta\begin{pmatrix}\bar{2}\\\underline{1}\end{pmatrix}^{\bullet} & \overset{\bullet}{\underset{n}{\operatorname{ch}}} \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} \\ + \theta[f\simeq\underline{1}\simeq\overline{2}]C\begin{pmatrix}\bar{2}\\\underline{1}\end{pmatrix}^{\bullet} & \overset{\bullet}{\underset{n}{\operatorname{ch}}} \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} & \Delta\begin{pmatrix}\bar{2}\\\underline{1}\end{pmatrix}^{\bullet} & \overset{\bullet}{\underset{n}{\operatorname{ch}}} \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} \\ \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} & \Delta\begin{pmatrix}\bar{2}\\\underline{1}\end{pmatrix}^{\bullet} & \overset{\bullet}{\underset{n}{\operatorname{ch}}} \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} \\ \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} & \overset{\bullet}{\underset{n}{\operatorname{ch}}} \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} \\ \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} & \overset{\bullet}{\underset{n}{\operatorname{ch}}} \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} \\ \\ \frac{1}{\underline{1}}\overset{\bullet}{\underbrace{1}}\overset{\bullet}{\underbrace{1}} \\ \\ \frac{1}{\underline{1}}\end{pmatrix}^{\bullet} \\ \\ \frac{1}{\underline{1}}\overset{\bullet}{\underbrace{1}}\overset{\bullet}{\underbrace{1}} \\ \\ \frac{1}{\underline{1}}\overset{\bullet}{\underbrace{1}} \\ \\ \frac{1}{\underline{1}} \\ \\ \frac{1}{\underline{1}}$$

consistent with Kälin '17

Summary & outlook

- Subject: flexible Kleiss-Kuijf-reduced color representations
- \blacktriangleright New bases and decompositions for qQ, qg and gg stretches
- Previous results reused via factorization
 - Del Duca, Dixon, Maltoni '99 Melia '13 Johansson, AO '15
- Applicable to graviton-matter amplitudes via color-kinematics

Plefka, Wormsbecher '18

Summary & outlook

- Subject: flexible Kleiss-Kuijf-reduced color representations
- ▶ New bases and decompositions for *qQ*, *qg* and *gg* stretches
- Previous results reused via factorization
 Del Duca, Dixon, Maltoni '99
 - Melia '13 Johansson, AO '15
- Applicable to graviton-matter amplitudes via color-kinematics

Plefka, Wormsbecher '18

 Applicable to loops via gen. unitarity via method of Bodger Maguil AC

Badger, Mogull, AO, O'Connell '15 AO, Page '16 also used in Bourjaily, Herrmann, Langer, McLeod, Trnka '19 [Enrico's talk]

Implemented in numerical unitary framework

Abreu, Febres Cordero, Ita, Page, Sotnikov '18 Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov '19

• Orthogonal/complementary to SU(N) trace methods

Bern, Kosower '90 Bern, Dixon, Kosower '94 Edison, Naculich '11 Ita, Ozeren '11 Reuschle, Weinzierl '13 Schuster '13

Hopefully helpful for future calculations beyond leading color!

Thank you, and stay safe!

Backup slides

Tensor in JO color factors

Loop-level KK relations

Question: do irred. numerators Δ_i satisfy extra relations? Answer: **yes**, they inherit KK relations from cuts.

A(1,2,3,4) + A(1,2,4,3) + A(1,4,2,3) = 0

28 / 25

2-loop example in detail

$$\begin{split} \tilde{\Delta} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_2 - \ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Delta \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_2 - \ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 3 \\ 4 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Delta \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_2 - \ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Delta \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_2 - \ell_1} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} - C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Big{}^{\ell_1} \Delta \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_2 - \ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + \left\{ C \begin{pmatrix} 3 \\ 4 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} - C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Big{}^{\ell_1} \Delta \begin{pmatrix} 3 \\ 4 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Delta \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_2 - \ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Delta \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_2 - \ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ + C \begin{pmatrix} 4 \\ 3 \end{pmatrix} \underbrace{}^{\ell_1} \begin{pmatrix} 1 \\$$

DDM-based 1-loop decomposition

Del Duca, Dixon, Maltoni '99

$$\mathcal{A}_{n}^{(1)} = \sum_{\sigma \in S_{n}/D_{n}} \tilde{f}^{b_{1}a_{\sigma(1)}b_{2}} \tilde{f}^{b_{2}a_{\sigma(2)}b_{3}} \dots \tilde{f}^{b_{n}a_{\sigma(n)}b_{1}} A^{(1)}(\sigma(1), \sigma(2), \dots, \sigma(n))$$
$$= \sum_{\sigma \in S_{n}/D_{n}} C\left(\bigcap_{\sigma(1)}^{(2)} \bigcap_{\sigma(n)}^{(1)} \sigma(n) \right) A^{(1)}(\sigma(1), \sigma(2), \dots, \sigma(n))$$

DDM-based 1-loop decomposition

Del Duca, Dixon, Maltoni '99 1-loop KK relations by Bern, Kosower '90

$$\mathcal{A}_{n}^{(1)} = \sum_{\sigma \in S_{n}/D_{n}} C\left(\overbrace{\sigma(2)}_{\sigma(1)} \overbrace{\sigma(n)}^{\cdots} \overbrace{\sigma(n)}^{\sigma(n-1)} \right) A^{(1)}(\sigma(1), \sigma(2), \dots, \sigma(n)),$$

DDM stretches at 2 loops

Badger, Mogull, AO, O'Connell '15

Generalization and subtleties in AO, Page '16

3-loop topologies

3-loop topologies (d) and (f)

3-loop topologies (g) and (h)

3-loop $\mathcal{N} = 4$ example

AO, Page '16

integrand by Bern, Carrasco, Dixon, Johansson, Kosower, Roiban '07

integrated by Henn, Mistlberger '16 $\mathcal{A}_{\mathcal{N}=4}^{(3)} = \sum_{\sigma \in S_{\star}} \sigma \circ I \left| \frac{1}{8} C \left(\left| \frac{1}{2} \right| \right)^{1} \Delta \left(\left| \frac{\ell_{1}}{\ell_{2}} \right| \right)^{1} \right)$ $+\frac{1}{2}C\left(\overset{4}{\overbrace{}}\overset{1}{\overbrace{}}\right)\left\{\Delta\left(\overset{4}{\overbrace{}}\overset{\ell_{3}}{\overbrace{}}\overset{1}{\ell_{1}}\right)+\Delta\left(\overset{4}{\overbrace{}}\overset{\ell_{3}}{\overbrace{}}\overset{\ell_{1}}{\overbrace{}}^{1}\right)\right\}$ $+C\left(\begin{smallmatrix} 4 & & \\ &$ $+ C \begin{pmatrix} 4 & -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \left\{ \frac{1}{2} \Delta \begin{pmatrix} 4 & -\frac{1}{2} & -\frac{1}{2} \\ \ell_2 & -\frac{1}{2} \end{pmatrix} + \Delta \begin{pmatrix} 4 & -\frac{1}{2} & -\frac{1}{2} \\ \ell_2 & -\frac{1}{2} \end{pmatrix} + \frac{1}{3} \Delta \begin{pmatrix} 4 & -\frac{1}{2} & -\frac{1}{2} \\ \ell_2 & -\frac{1}{2} \end{pmatrix} \right\} \right|$