A Coaction ftor
Feynman Integrals

Part 1

Claude Duhr

in collaboration with S. Abreu, R. Britto, E. Gardi, James Matthew

Zoomplitudes 2020
15 May 2020



@ Feynman integrals L

® FFeynman integrals are the cornerstone of perturbative QFT.

= We want to understand them as well as we can!

® Possible questions:

= Which class of functions?

= [s there some ‘hidden’ algebraic structure?

® In many cases we get multiple polylogarithms (IMPLs):

°dt
G(al,...,an;z):/ G(ag,...,an;t)
0

t—a1

G(ay;z) = log (1 — i) G(0,1;2) = —Lis(2) G(0,1;1) = —Liy (1) = =

aq

® Beyond one loop: Also other functions may appear (e.g., elliptic)



@ Polylogarithms e“’

® (Motivic) periods can be equipped with a coaction. [Brown’

® For MPLs it takes the form: [Goncharov, Brown]

A(G@@z) =) G(b;z) ® G3(a@; 2)

bCa

® Examples:
A(G(L;2)) =G(1;2) @14+ 1® G(1; 2) G(1;z) = log(1 — 2)

A(G(0,1;2)) =G(0,1;2) 1+ G(1;2) ® G(0;2) + 1 ® G(0, 1; 2)

A(27i) = 2mi @ 1



@ Polylogarithms e“’

® (Motivic) periods can be equipped with a coaction. [Brown’

® For MPLs it takes the form: [Goncharov, Brown]

A(G(d;2)) = ) G(b;2) ® Gy(d; 2)

bCa
4 VA
A(/ wa»):E/w,;@/wa
sum over master integrals we

® To which other class of integrals can this be applied?

® Can we apply 1t directly to Feynman integrals/amplitudes?

= Motivic coaction naturally acts on Feynman integral. [Brown]



@ The class of integrals ero

® Polylogarithms are integrals of dlog-forms integrated over a
pobﬁope.

= Special case of integrals defined via positive geometries:

® Positive geometry ~ stratified space Y s.t.:  [Arkani-Hamed, Bai, Lam]

= Unique normalised differential form Q(Y') with logarithmic
singularities on the boundary 9Y.

= Fach boundary component is itself a positive geometry.

® Canonical integrals: / (A(Y2) where Y; and Y5 are positive
Y

geometries.



The coaction | pre

&

® LExample: Straight-line Y = |0, 1] is a positive geometry with

canonical form
U du du

([0, 1]) = dlog = |

u— 1 U 1l —u

1
We will consider integrals like Iy = / u€ (1 — ) (du | du )
0

u 1—u/)

‘Dimensional regularisation’ of singularities at u = 0, 1.

O Proposal for the coaction [see Ruth’s talk for details]:

_ , —1 | Abreu, Britto, CD,
A ( /‘)’ UJ) o /y Wi & C’LJ [‘/ | W Gardi, Matthew]

{7} : basis of contours. {w; } : basis of integrands.

/ wj = Cy;(1+ O(e)) | C;; = intersection matrix |
Yi




@ The coaction 9“’

1
® Example: ]Y:/ ut (1 —u) (du | au )
0

U 1l —u
2 2 4
== SetdGl - S €t Gi=Lin(1)

A(Iy):A(/w>=/W®Cﬁl WZIY(X)EIY
Y Y Y 2

® One would have obtained the same answer by acting with
coaction on MPLs on the zeta values in €- expansion.

A(C2n+1) = Cant1 ® 1 + 1 ® Cont1 A(lon) = (n®1

® Highly non-trivial conjecture [Abreu, Britto, CD, Gardi, Matthew]:

‘ The coaction 1s consistent with the expansion in DimReg. ‘

[See also work by Brown & Dupont, Talk by Brown at Amplitudes 2019.]



@ The coaction 9“’

® How much evidence do we have for this conjecture?
® What does it have to do with Feynman integrals?

= This talk (Part I): The coaction on all one-loop integrals.

= Next talk (Part II): Extension to hypergeometric functions
and to some two-loop cases.



One-loop integrals e“’
@ P g

® One-loop integrals provide examples of positive geometries.

® Example: one-loop box integral (p; = 0):

A u4 D
d:z:5 1—sz Tv=DJ?

U = Zazz F = (—s)xiz3 + (— t)x2x4—|—UZm T;
Singular surfaces: U=20 F =0
Linear
Integration boundaries: x; =0

= Geometry for n-point 1-loop: 1 quadric + (n + 1) hyperplanes.

) Deﬁne S Positive geometr'}]. [Arkani-Hamed, Bai, Lam; Arkani-Hamed, Yuan]



@ One-loop master integrals e

® Need: a basis of integrands (‘'master integrals’) and a basis of

contours.

® At one-loop we know a basis of integrands.

® Example: Every integral of the type

/de N(k P1, p2)
k% +mi] [(k 4+ p1)? + m3] [(k + p1 + p2)? + mj]

can be written as a linear combination of the integrals

<[ w0 2 000

D =4 — 2¢ D =2 — 2¢ D =2 — 2¢



@ One-loop contours e“’

® Contours associated to 1-loop integrals were studied in the 60’s

[ Fotiadi, Pham; Teplitz, Hwa; Federbusch; Landshof, Polkinghorne, ...]

1. I'p : computes Feynman integral

2. Fl, F13, F134 , ... - computes residues where subset of

propagators were put on shell.
1

o > 273 0 (p* — m?) 0(p°)

= Cut integral, cf.

3. I'oo1, 'so13, --- : computes residues at a subset of
propagators and at singularity at infinity.

® There are more of these contours than master integrals.

= There must be relations among these contours.



@ Relations among contours e

® Relations involving singularity at infinity (C'= subset of props.)

[ 1, if|C]odd,
Looo = —22cTe + Y (~1)IEV2+IXI/2p TCT1 0, if|C] even,
ccX CC{l...n}

= ‘Cuts of singularities at infinity” are not independent basis
elements.

® Relations involving uncut integral:

ZCI+ZCZ]I I, mod i

i,JE[Nn
z<j

= Sum over single and double cuts reproduces original integral.

O Only contours where a subset of propagators are cut remain.

= Matches precisely the number of master integrals.



@ The diagrammatic coaction er

® Example: Triangle, m2=0,p; #0.

Props: €1, €2 €1,€2 Props: €9, €3

Props: €1, €3 €1,€3 Props: e, eq,e3 €1, €2, €3

= Fach graph represents a Laurent series in dimensional

regularisation.

= Checked consistency of Laurent expansion and coaction up

to terms of weight 4.



) The diagrammatic coaction &

® Example: Triangle, m? =0, p; #0.

1
Finite Bubble integrals diverge: —-— —I— ..

[ -
— i

= Pole cancels due to relation among cut and uncut integrals:

€
2% eo A" 2 T2 ey A 2
1 ! 1 — 1
€3 - - — —€ €3
< T =Sl T 5
. 3 ‘ 3 CIN{3 CIN{ 3




@ The diagrammatic coaction er

® Bubble with massive propagators:
e1 €1 €] 1
A< |- <O <
e1 e1
00
= This relation 1s incorrect...

® ... but the following relation holds!

A< | - <O <>

O ) P> )

- 1
- AddlthnaI terms fI‘OIIl Fool = —2F1 — F12 = —2 (Fl + §F12>.



[@] The one-loop conjecture e

® Conjecture: The coaction on one-loop integrals in DimReg can
be represented entirely In terms of graphs: [Abreu, Britto, CD, Gardi]

(G, C) = one-loop graph G with subset C of propagators cut.

AG.C)= ) (Gx.C)® |(G,X)+ax » (G, XUe)

CCX e€Ec\C

Graph with all edges pinched but those in X

[ 1/2,|X] odd,
X790 0, |X]|even.

= Recently proven to hold for (motivic) finite triangle and box
integr als 1n D=4. [ Tapuskovic]



con ) ecture @ ¢
[@ The one-loop
2\

O Example:
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@ Differential equations e

® We can obtain differential equations [Henn] from the coaction, e.g.:
NN Max

NMax

1 [Abreu, Britto,
1 CD, Gardi]

Max

= dlog-forms are related to maximal, next-to-maximal (NMax)

and NINMax cuts.

= The relevant cuts can be computed for an arbitrary number
of external and propagator masses!

= We obtain explicit canonical differential equations for ALL

one-loop integrals !

[ Relation to Caron-Huot'’s talk?]



@ One-loop symbols e“’

® I'rom canonical differential equations one can obtain symbols.

o Example: 60 (higher orders are similar) [Abreu, Britto, CD, Gardi]

; .1 .1 | .1
S('<[)(Z;'O'® +%:@®(<+2%:-q>,
ij J ‘ i J ’
([D)+<oIT
(i5) J : Dual conformally

invariant

O

(ig;k) J .

® Symbols only involve:
= Bubble and tadpole integrals.

= Max-, NMax-, NNMax-cuts from differential equation.
(See also [Spradlin, Volovich; Arkani-Hamed, Yuan; Herrmann, Parra-Martinez])






@ Conclusion e“’

® Strong evidence that there 1s a coaction which:

= acts on Integrals associated to positive geometries,

= 1s consistent with expansion in DimReg.
= |n some cases this was proven rigorously! [Brown, Dupont]

® When applied to one-loop, it results 1n a very compact
representation of the coaction in terms of one-loop integrals and
their cuts.

= Non-trivial role played by relations between cuts/contours.

= Proven for finite box and triangle integrals. [Tapuskovic]

® Ruth’s talk: extension to other classes of positive geometry and
two-loop integrals.



