A Coaction for Feynman Integrals

 Part I

 Part I}

Claude Duhr
in collaboration with S. Abreu, R. Britto, E. Gardi, James Matthew

Zoomplitudes 2020
15 May 2020

Feynman integrals

- Feynman integrals are the cornerstone of perturbative QFT.
\Rightarrow We want to understand them as well as we can!
- Possible questions:
\Rightarrow Which class of functions?
\Rightarrow Is there some 'hidden' algebraic structure?
- In many cases we get multiple polylogarithms (MPLs):

$$
\begin{gathered}
G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \\
G\left(a_{1} ; z\right)=\log \left(1-\frac{z}{a_{1}}\right) \quad G(0,1 ; z)=-\operatorname{Li}_{2}(z) \quad G(0,1 ; 1)=-\mathrm{Li}_{2}(1)=-\zeta_{2}
\end{gathered}
$$

- Beyond one loop: Also other functions may appear (e.g., elliptic)

Polylogarithms

- (Motivic) periods can be equipped with a coaction.
- For MPLs it takes the form:
[Goncharov, Brown]

$$
\Delta(G(\vec{a} ; z))=\sum_{\vec{b} \subseteq \vec{a}} G(\vec{b} ; z) \otimes G_{\vec{b}}(\vec{a} ; z)
$$

- Examples:

$$
\begin{aligned}
& \Delta(G(1 ; z))=G(1 ; z) \otimes 1+1 \otimes G(1 ; z) \quad G(1 ; z)=\log (1-z) \\
& \Delta(G(0,1 ; z))=G(0,1 ; z) \otimes 1+G(1 ; z) \otimes G(0 ; z)+1 \otimes G(0,1 ; z) \\
& \Delta(2 \pi i)=2 \pi i \otimes 1
\end{aligned}
$$

Polylogarithms

- (Motivic) periods can be equipped with a coaction.
- For MPLs it takes the form:
[Goncharov, Brown]

$$
\begin{aligned}
& \Delta(G(\vec{a} ; z))= \sum_{\vec{b} \subseteq \vec{a}} G(\vec{b} ; z) \otimes G_{\vec{b}}(\vec{a} ; z) \\
& \vec{a}=a_{1} a_{2} a_{3} a_{4} a_{a_{2}} \\
& \gamma_{\vec{b}}
\end{aligned}
$$

$$
\Delta\left(\int_{0}^{z} \omega_{\vec{a}}\right)=\sum_{\vec{b} \subseteq \vec{a}} \int_{0}^{z} \omega_{\vec{b}} \otimes \int_{\gamma_{\vec{b}}} \omega_{\vec{a}}
$$

sum over master integrals integral over contour 'dual' to $\omega_{\vec{b}}$

- To which other class of integrals can this be applied?
- Can we apply it directly to Feynman integrals/amplitudes?
\Rightarrow Motivic coaction naturally acts on Feynman integral. [Brown]

The class of integrals

- Polylogarithms are integrals of dlog-forms integrated over a polytope.
\Rightarrow Special case of integrals defined via positive geometries:
- Positive geometry ~stratified space Y s.t.: [Arkani-Hamed, Bai, Lam]
\Rightarrow Unique normalised differential form $\Omega(Y)$ with logarithmic singularities on the boundary ∂Y.
\Rightarrow Each boundary component is itself a positive geometry.
- Canonical integrals: $\int_{Y_{1}} \Omega\left(Y_{2}\right)$ where Y_{1} and Y_{2} are positive
geometries.

The coaction

- Example: Straight-line $Y=[0,1]$ is a positive geometry with canonical form

$$
\Omega([0,1])=d \log \frac{u}{u-1}=\frac{d u}{u}+\frac{d u}{1-u}
$$

We will consider integrals like $I_{Y}=\int_{0}^{1} u^{\epsilon}(1-u)^{\epsilon}\left(\frac{d u}{u}+\frac{d u}{1-u}\right)$. 'Dimensional regularisation' of singularities at $u=0,1$.

- Proposal for the coaction [see Ruth's talk for details]:

$$
\Delta\left(\int_{\gamma} \omega\right)=\int_{\gamma} \omega_{i} \otimes C_{i j}^{-1} \int_{\gamma_{j}} \omega
$$

[Abreu, Britto, CD, Gardi, Matthew]
$\left\{\gamma_{i}\right\}$: basis of contours.

$$
\int_{\gamma_{i}} \omega_{j}=C_{i j}(1+\mathcal{O}(\epsilon))
$$

$\left\{\omega_{i}\right\}$: basis of integrands.
[$C_{i j}=$ intersection matrix]

The coaction

- Example: $\quad I_{Y}=\int_{0}^{1} u^{\epsilon}(1-u)^{\epsilon}\left(\frac{d u}{u}+\frac{d u}{1-u}\right)$

$$
\begin{aligned}
= & \frac{2}{\epsilon}-\frac{\pi^{2}}{3} \epsilon+4 \zeta_{3} \epsilon^{2}-\frac{\pi^{4}}{20} \epsilon^{3}+\ldots \quad \zeta_{n}=\mathrm{Li}_{n}(1) \\
\Delta\left(I_{Y}\right)= & \Delta\left(\int_{\gamma} \omega\right)=\int_{\gamma} \omega \otimes C_{11}^{-1} \int_{\gamma} \omega=I_{Y} \otimes \frac{\epsilon}{2} I_{Y}
\end{aligned}
$$

- One would have obtained the same answer by acting with coaction on MPLs on the zeta values in ϵ - expansion.

$$
\Delta\left(\zeta_{2 n+1}\right)=\zeta_{2 n+1} \otimes 1+1 \otimes \zeta_{2 n+1} \quad \Delta\left(\zeta_{2 n}\right)=\zeta_{2 n} \otimes 1
$$

- Highly non-trivial conjecture [Abreu, Britto, CD, Gardi, Matthew]:

The coaction is consistent with the expansion in DimReg.
[See also work by Brown \& Dupont, Talk by Brown at Amplitudes 2019.]

The coaction

- How much evidence do we have for this conjecture?
- What does it have to do with Feynman integrals?
\Rightarrow This talk (Part I): The coaction on all one-loop integrals.
\Rightarrow Next talk (Part II): Extension to hypergeometric functions and to some two-loop cases.

One-loop integrals

- One-loop integrals provide examples of positive geometries.
- Example: one-loop box integral $\left(p_{i}^{2}=0\right)$:

$$
\begin{aligned}
& \sim \int_{0}^{\infty} d^{4} x \delta\left(1-\sum_{i} x_{i}\right) \frac{\mathcal{U}^{4-D}}{\mathcal{F}^{\nu-D / 2}} \\
& \mathcal{U}=\sum_{i} x_{i} \quad \mathcal{F}=(-s) x_{1} x_{3}+(-t) x_{2} x_{4}+\mathcal{U} \sum_{i} m_{i}^{2} x_{i}
\end{aligned}
$$

Singular surfaces:
Integration boundaries: $\quad x_{i}=0$

$$
\mathcal{U}=0 \quad \text { Linear } \quad \mathcal{F}=0 \quad \text { Quadratic }
$$

\Rightarrow Geometry for n-point 1 -loop: 1 quadric $+(n+1)$ hyperplanes.
\Rightarrow Defines positive geometry.
[Arkani-Hamed, Bai, Lam; Arkani-Hamed, Yuan]

8) One-loop master integrals

- Need: a basis of integrands ('master integrals') and a basis of contours.
- At one-loop we know a basis of integrands.
- Example: Every integral of the type

$$
\int d^{D} k \frac{N\left(k, p_{1}, p_{2}\right)}{\left[k^{2}+m_{1}^{2}\right]\left[\left(k+p_{1}\right)^{2}+m_{2}^{2}\right]\left[\left(k+p_{1}+p_{2}\right)^{2}+m_{3}^{2}\right]}
$$

can be written as a linear combination of the integrals

$D=4-2 \epsilon$
$D=2-2 \epsilon$

One-loop contours

- Contours associated to 1-loop integrals were studied in the 60's
[Fotiadi, Pham; Teplitz, Hwa; Federbusch; Landshof, Polkinghorne, ...]

1. Γ_{\emptyset} : computes Feynman integral
2. $\Gamma_{1}, \Gamma_{13}, \Gamma_{134}, \ldots$: computes residues where subset of propagators were put on shell.
\Rightarrow Cut integral, cf. $\frac{1}{p^{2}-m^{2}+i \varepsilon} \longrightarrow 2 \pi i \delta\left(p^{2}-m^{2}\right) \theta\left(p^{0}\right)$
3. $\Gamma_{\infty 1}, \Gamma_{\infty 13}, \ldots$: computes residues at a subset of propagators and at singularity at infinity.

- There are more of these contours than master integrals.
\Rightarrow There must be relations among these contours.

Relations among contours

- Relations involving singularity at infinity ($C=$ subset of props.)
\Rightarrow 'Cuts of singularities at infinity' are not independent basis elements.
- Relations involving uncut integral:

$$
\sum_{i \in[n]} \mathcal{C}_{i} I_{n}+\sum_{\substack{i, j \in[n] \\ i<j}} \mathcal{C}_{i j} I_{n}=-\epsilon I_{n} \quad \bmod i \pi
$$

\Rightarrow Sum over single and double cuts reproduces original integral.

- Only contours where a subset of propagators are cut remain.
\Rightarrow Matches precisely the number of master integrals.

The diagrammatic coaction

- Example: Triangle, $m_{i}^{2}=0, p_{i}^{2} \neq 0$.

\Rightarrow Each graph represents a Laurent series in dimensional regularisation.
\Rightarrow Checked consistency of Laurent expansion and coaction up to terms of weight 4 .

(8) The diagrammatic coaction

- Example: Triangle, $m_{i}^{2}=0, p_{i}^{2} \neq 0$.

\Rightarrow Pole cancels due to relation among cut and uncut integrals:

28 The diagrammatic coaction

- Bubble with massive propagators:

\Rightarrow This relation is incorrect...
- ... but the following relation holds!

\Rightarrow Additional terms from $\Gamma_{\infty 1}=-2 \Gamma_{1}-\Gamma_{12}=-2\left(\Gamma_{1}+\frac{1}{2} \Gamma_{12}\right)$.

The one-loop conjecture

- Conjecture: The coaction on one-loop integrals in DimReg can be represented entirely in terms of graphs: [Abreu, Britto, CD, Gardi]
$(G, C)=$ one-loop graph G with subset C of propagators cut.

$$
\Delta(G, C)=\sum_{C \subseteq X}\left(G_{X}, C\right) \otimes\left[(G, X)+a_{X} \sum_{e \in E_{G} \backslash C}(G, X \cup e)\right]
$$

Graph with all edges pinched but those in X

$$
a_{X}= \begin{cases}1 / 2, & |X| \text { odd } \\ 0, & |X| \text { even }\end{cases}
$$

\Rightarrow Recently proven to hold for (motivic) finite triangle and box integrals in $\mathrm{D}=4$.

The one-loop conjecture

- Example:

Differential equations

- We can obtain differential equations [Henn] from the coaction, e.g.:

$\Rightarrow d \log$-forms are related to maximal, next-to-maximal (NMax) and NNMax cuts.
\Rightarrow The relevant cuts can be computed for an arbitrary number of external and propagator masses!
\Rightarrow We obtain explicit canonical differential equations for ALL one-loop integrals!

One-loop symbols

- From canonical differential equations one can obtain symbols.
- Example: ϵ^{0} (higher orders are similar)
[Abreu, Britto, CD, Gardi]

Dual conformally

 invariant- Symbols only involve:
\Rightarrow Bubble and tadpole integrals.
\Rightarrow Max-, NMax-, NNMax-cuts from differential equation. (See also [Spradlin, Volovich; Arkani-Hamed, Yuan; Herrmann, Parra-Martinez])

One-loop symbols

erc

$$
\begin{aligned}
& s(\gamma)=\Sigma-F=F
\end{aligned}
$$

- Strong evidence that there is a coaction which:
\Rightarrow acts on integrals associated to positive geometries, \Rightarrow is consistent with expansion in DimReg.
\Rightarrow In some cases this was proven rigorously!
[Brown, Dupont]
- When applied to one-loop, it results in a very compact representation of the coaction in terms of one-loop integrals and their cuts.
\Rightarrow Non-trivial role played by relations between cuts/contours.
\Rightarrow Proven for finite box and triangle integrals.
- Ruth's talk: extension to other classes of positive geometry and two-loop integrals.

