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Feynman integrals

• In many cases we get multiple polylogarithms (MPLs):

G(a1, . . . , an; z) =

Z z

0

dt

t� a1
G(a2, . . . , an; t)

G(a1; z) = log

✓
1� z

a1

◆
G(0, 1; z) = �Li2(z)

• Feynman integrals are the cornerstone of perturbative QFT.

• Beyond one loop: Also other functions may appear (e.g., elliptic) 

G(0, 1; 1) = �Li2(1) = �⇣2

➡ We want to understand them as well as we can!

• Possible questions:
➡ Which class of functions?

➡ Is there some ‘hidden’ algebraic structure?
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Figure 1: (a) The integration path for G(a1, a2, a3, a4; z). (b) The integration path for

G�C (a1, a2, a3, a4; z) for C = {2, 3, 4}. The path �C encircles each of the singularities

ai 2 C counter-clockwise.

be written in the following suggestive way, at least in the generic case where the arguments

take generic values,

�MPL(G(~a; z)) =
X

C✓{1,...,n}

G(~aC ; z)⌦ (2⇡i)�|C|G�C (~a; z) , (2.20)

where the sum runs over all order-preserving subsets of {1, . . . , n}, including the empty

set, and where ~aC is the vector formed by the ai, i 2 C. G�C (~a; z) denotes the iterated

integral with the same integrand as G(~a; z), but where the integration contour encircles

the singularities at the points z = ai, i 2 C, which is equivalent to taking the residues at

these points (see fig. 1). We see that the coaction of MPLs has a very simple combinatorial

interpretation: the di↵erent terms in this sum correspond to the tensor product of the

MPL with this restricted set of poles and the integral over the di↵erential form obtained

by taking the residues at these poles.

The operation of taking residues has a direct analogue in terms of Feynman integrals.

The residues at the propagators of a Feynman integral are naturally identified with the

cuts of the integral, where some of the propagators have been put on-shell. Since all one-

loop Feynman integrals are expressible in terms of MPLs order-by-order in the dimensional

regulator, it is natural to ask whether the coaction of one-loop Feynman integrals admits a

similarly simple combinatorial description. In the rest of this paper we give evidence that

this is indeed the case, and we conjecture a formula for the coaction of one-loop Feynman

integrals which is purely diagrammatic in nature and very reminiscent of eq. (2.20). Before

stating this conjecture in Section 4, we introduce and motivate our construction in the next

section using some simple examples of one-loop integrals.

3 First examples of the diagrammatic representation of the coaction

In this section, we present some simple examples which serve as a motivation for the

main conjecture of the next section. We investigate some one-loop Feynman integrals with

up to three propagators, and we show that, empirically, we can rearrange the terms in the
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Polylogarithms

~a = a1a2a3a4 ~b = a2a3a4

• Examples:

�(G(1; z)) = G(1; z)⌦ 1 + 1⌦G(1; z) G(1; z) = log(1� z)

�(G(0, 1; z)) = G(0, 1; z)⌦ 1 +G(1; z)⌦G(0; z) + 1⌦G(0, 1; z)

�(2⇡i) = 2⇡i⌦ 1

• For MPLs it takes the form:

[Brown]• (Motivic) periods can be equipped with a coaction.

[Goncharov, Brown]
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Polylogarithms

• For MPLs it takes the form:

[Brown]

~a = a1a2a3a4 ~b = a2a3a4

sum over master integrals integral over contour ‘dual’ to 

• (Motivic) periods can be equipped with a coaction.

[Goncharov, Brown]

➡ Motivic coaction naturally acts on Feynman integral.

• To which other class of integrals can this be applied?

• Can we apply it directly to Feynman integrals/amplitudes?
[Brown]



The class of integrals

➡ Special case of integrals defined via positive geometries:

• Polylogarithms are integrals of dlog-forms integrated over a 
polytope.

• Positive geometry ~ stratified space     s.t.:

➡ Unique normalised differential form           with logarithmic 
singularities on the boundary      .

➡ Each boundary component is itself a positive geometry.

Y
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• Canonical integrals:                   where       and       are positive 
geometries.

Z

Y1

⌦(Y2)
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[Arkani-Hamed, Bai, Lam]
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The coaction
• Example: Straight-line                  is a positive geometry with 

canonical form
Y = [0, 1]
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⌦([0, 1]) = d log
u

u� 1
=

du

u
+

du

1� u

<latexit sha1_base64="UUadWlAQU++pBz/yw2d1W6E6nRM="></latexit>

We will consider integrals like                                                        . 

‘Dimensional regularisation’ of singularities at                .

• Proposal for the coaction [see Ruth’s talk for details]: 

     : basis of integrands.     : basis of contours.
[       = intersection matrix]

[Abreu, Britto, CD, 
Gardi, Matthew]



The coaction

• Example:

• One would have obtained the same answer by acting with 
coaction on MPLs on the zeta values in    - expansion.

• Highly non-trivial conjecture [Abreu, Britto, CD, Gardi, Matthew]:

[See also work by Brown & Dupont, Talk by Brown at Amplitudes 2019.]

The coaction is consistent with the expansion in DimReg.



The coaction

• How much evidence do we have for this conjecture?

• What does it have to do with Feynman integrals?

➡ This talk (Part I): The coaction on all one-loop integrals.

➡ Next talk (Part II): Extension to hypergeometric functions 
and to some two-loop cases.



One-loop integrals
• One-loop integrals provide examples of positive geometries.

• Example: one-loop box integral (          ):    

Singular surfaces:

Integration boundaries:
Linear

Quadratic

➡ Geometry for    -point 1-loop: 1 quadric +            hyperplanes.

➡ Defines positive geometry. [Arkani-Hamed, Bai, Lam; Arkani-Hamed, Yuan]



One-loop master integrals

• Need: a basis of integrands (‘master integrals’) and a basis of 
contours.

Z
dDk

N(k, p1, p2)

[k2 +m2
1] [(k + p1)2 +m2

2] [(k + p1 + p2)2 +m2
3]

can be written as a linear combination of the integrals

where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads

1
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mod i⇡ . (3.31)

The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,
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(3.32)

Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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(3.33)

or in terms of graphs,
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(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.
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or in terms of graphs,
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Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.
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The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,

1⌦ T (z, z̄) = 1 1
e2

e1

��
✏�1 ⌦ 1

2

3

e2

e1
e3

�����
✏1

+ 2 2
e3

e2

��
✏�1 ⌦ 1

2

3

e2

e3e1

�����
✏1

+ 3 3
e3

e1

��
✏�1 ⌦ 1

2

3
e1 e3

e2
�����
✏1

.

(3.32)

Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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or in terms of graphs,

�MPL

2

4 1

2

3

e2

e1

e3

3

5 = 1 1
e2

e1

⌦ 1

2

3

e2

e1
e3 + 2 2

e3

e2

⌦ 1

2

3

e2

e3e1

+ 3 3
e3

e1

⌦ 1

2

3
e1 e3

e2

+ 1

2

3

e2

e1

e3 ⌦ 1

2

3

e2

e1 e3
.

(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.
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Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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or in terms of graphs,
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Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.
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From the three cases we have seen so far, a pattern emerges in the coaction on one-loop

integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m2
1 and m2

2.

This integral is finite in D = 2� 2✏ dimensions. It is convenient to introduce the variables

w =
1 + µ1 � µ2 +

p
�(1, µ1, µ2)

2
, w̄ =

1 + µ1 � µ2 �
p

�(1, µ1, µ2)

2
, (3.35)

where µi = m2
i /p

2. The bubble with massive propagators is finite in two dimensions, and

the coaction on the leading term in the ✏ expansion is (see eq. (B.11) and (B.15))
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If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see

eq. (B.12), (B.13) and (B.14))
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⌦
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(3.37)

and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in

section 4.

– 14 –

From the three cases we have seen so far, a pattern emerges in the coaction on one-loop

integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m2
1 and m2

2.

This integral is finite in D = 2� 2✏ dimensions. It is convenient to introduce the variables

w =
1 + µ1 � µ2 +

p
�(1, µ1, µ2)

2
, w̄ =

1 + µ1 � µ2 �
p

�(1, µ1, µ2)

2
, (3.35)

where µi = m2
i /p

2. The bubble with massive propagators is finite in two dimensions, and

the coaction on the leading term in the ✏ expansion is (see eq. (B.11) and (B.15))

�MPL [J2] =
1

2

✓
log

w(1� w̄)

w̄(1� w)
⌦ 1 + 1⌦ log

w(1� w̄)

w̄(1� w)

◆
+O(✏) . (3.36)

If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see

eq. (B.12), (B.13) and (B.14))

e1

e2

⌦
e1

e2
+ e1 ⌦

e1

e2
+ e2 ⌦

e1

e2
=

=
1⌦ 1

✏
+O(✏0) ,

(3.37)

and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in

section 4.

– 14 –

From the three cases we have seen so far, a pattern emerges in the coaction on one-loop

integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m2
1 and m2

2.

This integral is finite in D = 2� 2✏ dimensions. It is convenient to introduce the variables

w =
1 + µ1 � µ2 +

p
�(1, µ1, µ2)

2
, w̄ =

1 + µ1 � µ2 �
p

�(1, µ1, µ2)

2
, (3.35)

where µi = m2
i /p

2. The bubble with massive propagators is finite in two dimensions, and

the coaction on the leading term in the ✏ expansion is (see eq. (B.11) and (B.15))

�MPL [J2] =
1

2

✓
log

w(1� w̄)

w̄(1� w)
⌦ 1 + 1⌦ log

w(1� w̄)

w̄(1� w)

◆
+O(✏) . (3.36)

If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see

eq. (B.12), (B.13) and (B.14))

e1

e2

⌦
e1

e2
+ e1 ⌦

e1

e2
+ e2 ⌦

e1

e2
=

=
1⌦ 1

✏
+O(✏0) ,

(3.37)

and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in

section 4.

– 14 –

where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads
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The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,
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Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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or in terms of graphs,
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(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.

– 13 –

• Example: Every integral of the type

D = 4� 2✏ D = 2� 2✏ D = 2� 2✏

• At one-loop we know a basis of integrands.



One-loop contours

• Contours associated to 1-loop integrals were studied in the 60’s

1.      : computes Feynman integral

[Fotiadi, Pham; Teplitz, Hwa; Federbusch; Landshof, Polkinghorne, …]

2.     ,      ,        , … : computes residues where subset of 
propagators were put on shell. 

➡ Cut integral, cf. 1

p2 �m2 + i"
�! 2⇡i �(p2 �m2) ✓(p0)

3.        ,          , … : computes residues at a subset of 
propagators and at singularity at infinity.

• There are more of these contours than master integrals.

➡ There must be relations among these contours.



Relations among contours
• Relations involving singularity at infinity (   = subset of props.)

�1C = �2xC �C +
X

C⇢X

(�1)d|C|/2e+d|X|/2e�X

xC =

⇢
1 , if |C| odd ,
0 , if |C| even ,

C ✓ {1 . . . n}

➡ ‘Cuts of singularities at infinity’ are not independent basis 
elements.

• Relations involving uncut integral:

Indeed, let us choose coordinates such that P1 is the hyperplane defined by Y + = 0. Then

we can decompose ⌃ = ⌃+
[ S̃1 [ ⌃�, where ⌃± = {Y 2 ⌃ : ±Y + > 0}. The vanishing

cell can then be identified with one of these two parts, and we may choose without loss of

generality Ẽ1 = ⌃+. The integral over S̃1 vanishes (because we integrate the D-form $D
n

over the (D � 1) sphere S̃1), and so we get the identity
Z

⌃
$D

n =

Z

⌃+
$D

n +

Z

⌃�
$D

n . (8.10)

Let us now show that the two integrals give identical contributions. Since ⌃ is defined by

(Y Y ) = 0, whenever Y 2 ⌃+ we have �Y 2 ⌃�. The integrand $D
n is invariant under the

change of variables Y ! �Y (up to terms proportional to i⇡),

$D
n ! (�1)n+xn+2✏$D

n = (�1)n+xn$D
n = $D

n mod i⇡ , (8.11)

because n+ xn is always even (xn is defined in eq. (5.10)). Hence we find
Z

Ẽ1

$D
n =

Z

⌃+
$D

n =

Z

⌃�
$D

n . (8.12)

Putting everything together, we find the following remarkable relation relating the sum of

all single and double cuts with the original Feynman integral,

X

i2[n]

CiIn +
X

i,j2[n]
i<j

CijIn = �✏ In mod i⇡ . (8.13)

The special case of this relation for the one-mass box was considered in ref. [66]. In

Appendix C.2 we provide an alternative, purely analytic, proof of eq. (8.13). The proof

presented here relies crucially on the fact that the integral over the vanishing cell in the

left-hand side of eq. (8.8) is simple enough that it can be performed in closed form. If

C 6= ;, then the structure of the vanishing cell Ẽ1C is more complicated, and we do not

currently know how to perform the integral in closed form. We have performed an extensive

search for explicit relations similar to eq. (8.13) for C 6= ;, but no such relation was found.

8.4 A basis of one-loop cut integrals

It is well known that using IBP identities every (scalar) Feynman integral can be

written as a linear combination of a minimal set of integrals called master integrals. It

is known that the number of master integrals is always finite [67], related to a sum of

Milnor numbers of critical points [68]. At one loop, we can choose the basis integrals to

lie in di↵erent dimensions, and one finds that the integrals eJn form a basis of all one-loop

integrals in even dimensions.18 Since cut integrals satisfy the same IBP identities as their

uncut analogues, it is natural to ask if we can write down a basis for one-loop cut integrals.

In the following we discuss two such bases associated to singularities of the first and second

types.

18We keep in mind that some two- and three-point functions are reducible, and are therefore not inde-

pendent basis elements.
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➡ Sum over single and double cuts reproduces original integral.

• Only contours where a subset of propagators are cut remain.
➡ Matches precisely the number of master integrals. 



The diagrammatic coaction

where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.
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Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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or in terms of graphs,
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(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.
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where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads
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The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,
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(3.32)

Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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(3.33)

or in terms of graphs,
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(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.
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➡ Checked consistency of Laurent expansion and coaction up 
to terms of weight 4. 

➡ Each graph represents a Laurent series in dimensional 
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The diagrammatic coaction

where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads
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The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,
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(3.32)

Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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(3.33)

or in terms of graphs,
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(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.
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where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads
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The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,
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(3.32)

Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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(3.33)

or in terms of graphs,
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(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.
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➡ Pole cancels due to relation among cut and uncut integrals:

• Example: Triangle,            ,           . 

Bubble integrals diverge: Finite

where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads
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The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,
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(3.32)

Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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(3.33)

or in terms of graphs,
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(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.
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where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads
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The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,
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(3.32)

Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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(3.33)

or in terms of graphs,
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(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.
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where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads
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The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,
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(3.32)

Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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or in terms of graphs,
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Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏4),

and conjecture it holds to all orders.

– 13 –

where X|✏k denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads

1

2

3

e2

e1
e3

�����
✏n

+ 1

2

3

e2

e3e1

�����
✏n

+ 1

2

3
e1 e3

e2
�����
✏n

= 1

2

3

e2

e1

e3

�����
✏n�1

mod i⇡ . (3.31)

The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,

1⌦ T (z, z̄) = 1 1
e2

e1

��
✏�1 ⌦ 1

2

3

e2

e1
e3

�����
✏1

+ 2 2
e3

e2

��
✏�1 ⌦ 1

2

3

e2

e3e1

�����
✏1

+ 3 3
e3

e1

��
✏�1 ⌦ 1

2

3
e1 e3

e2
�����
✏1

.

(3.32)

Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).
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The diagrammatic coaction

• Bubble with massive propagators:

➡ This relation is incorrect…

From the three cases we have seen so far, a pattern emerges in the coaction on one-loop

integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m2
1 and m2

2.

This integral is finite in D = 2� 2✏ dimensions. It is convenient to introduce the variables

w =
1 + µ1 � µ2 +

p
�(1, µ1, µ2)

2
, w̄ =

1 + µ1 � µ2 �
p

�(1, µ1, µ2)

2
, (3.35)

where µi = m2
i /p

2. The bubble with massive propagators is finite in two dimensions, and

the coaction on the leading term in the ✏ expansion is (see eq. (B.11) and (B.15))
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If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see

eq. (B.12), (B.13) and (B.14))
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and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in

section 4.
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For graphs with three edges, we have

�Inc

2

64
e2

e1

e3

3

75 =

e2

e1

e3 ⌦

e2

e3e1
+

e1

e2

⌦
e2

e1
e3

+
e2

e3

⌦

e2

e3
e1

+
e1

e3

⌦
e2

e1 e3
(4.8)

+ e1 ⌦
e1

e3

e2

+ e2 ⌦

e2

e1

e3 + e3 ⌦
e2

e3
e1

�Inc

2

64
e1

e3

e2

3

75 = e1
e3

e2

⌦

e2

e3e1
+

e1

e2
⌦

e2

e1
e3

+
e1

e3
⌦

e2

e1 e3
+ e1 ⌦

e1
e3

e2

(4.9)

�Inc

2

64

e2

e1
e3

3

75 =

e2

e1
e3 ⌦

e2

e3e1
+

e1

e2
⌦

e2

e1
e3 (4.10)

�Inc

2

64

e2

e3e1

3

75 =

e2

e3e1
⌦

e2

e3e1
(4.11)

– 17 –

�

From the three cases we have seen so far, a pattern emerges in the coaction on one-loop

integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m2
1 and m2

2.

This integral is finite in D = 2� 2✏ dimensions. It is convenient to introduce the variables

w =
1 + µ1 � µ2 +

p
�(1, µ1, µ2)

2
, w̄ =

1 + µ1 � µ2 �
p

�(1, µ1, µ2)

2
, (3.35)

where µi = m2
i /p

2. The bubble with massive propagators is finite in two dimensions, and

the coaction on the leading term in the ✏ expansion is (see eq. (B.11) and (B.15))
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If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see

eq. (B.12), (B.13) and (B.14))
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and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in

section 4.
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From the three cases we have seen so far, a pattern emerges in the coaction on one-loop

integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m2
1 and m2

2.

This integral is finite in D = 2� 2✏ dimensions. It is convenient to introduce the variables

w =
1 + µ1 � µ2 +

p
�(1, µ1, µ2)

2
, w̄ =

1 + µ1 � µ2 �
p
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where µi = m2
i /p

2. The bubble with massive propagators is finite in two dimensions, and

the coaction on the leading term in the ✏ expansion is (see eq. (B.11) and (B.15))
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If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see

eq. (B.12), (B.13) and (B.14))
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and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in

section 4.
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last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m2
1 and m2

2.

This integral is finite in D = 2� 2✏ dimensions. It is convenient to introduce the variables

w =
1 + µ1 � µ2 +

p
�(1, µ1, µ2)

2
, w̄ =

1 + µ1 � µ2 �
p

�(1, µ1, µ2)

2
, (3.35)

where µi = m2
i /p

2. The bubble with massive propagators is finite in two dimensions, and

the coaction on the leading term in the ✏ expansion is (see eq. (B.11) and (B.15))

�MPL [J2] =
1

2

✓
log

w(1� w̄)

w̄(1� w)
⌦ 1 + 1⌦ log

w(1� w̄)

w̄(1� w)

◆
+O(✏) . (3.36)

If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see

eq. (B.12), (B.13) and (B.14))

e1

e2

⌦
e1

e2
+ e1 ⌦

e1

e2
+ e2 ⌦

e1

e2
=

=
1⌦ 1

✏
+O(✏0) ,

(3.37)

and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in

section 4.
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The one-loop conjecture
• Conjecture: The coaction on one-loop integrals in DimReg can 

be represented entirely in terms of graphs:

�(G,C) =
X

C✓X

(GX , C)⌦

2

4(G,X) + aX
X

e2EG\C

(G,X [ e)

3

5

Graph with all edges pinched but those in X

aX =

⇢
1/2 , |X| odd ,
0 , |X| even .

[Abreu, Britto, CD, Gardi]

 one-loop graph      with subset     of propagators cut.  (G,C)G

➡ Recently proven to hold for (motivic) finite triangle and box 
integrals in D=4. [Tapuskovic]



• Example:

are reproduced. For the two-mass-easy box, where all triple cuts vanish, they are repro-

duced by exactly the same procedure as for the massless box. For the two-mass hard box,

we have a mix of that procedure with the general mechanism described in Section 4.3:

while the contribution of the three-mass triangle to coaction component with weight 0 in

the right factor cancels because of the relation between maximal and next-maximal cuts

given in eq. (4.39), the contributions to those coaction terms coming from the divergent tri-

angles that appear only in bJ4(s, t, p21, p22) cancel by the same mechanism as in the massless

or two-mass-easy boxes.

5.7 Box with massive internal propagator

As a final example, we present the box with a single massive propagator, which is

the first example of a four-point integral for which at least one of each type of cut does

not vanish. The relation between the diagrammatic coaction and the coaction on MPLs

thus relies on the interplay of many di↵erent uncut and cut integrals. Since there are no

essential new features of this example compared to the ones discussed above, we simply

write the diagrammatic coaction below.

�

"
e4

e2

e3

e1

#
= e1 ⌦ e4

e2

e3

e1
+

 
e1

e3

s s
+

1

2
e1

!
⌦ e4

e2

e3

e1

+ t t
e4

e2

⌦ e4
e2

e3

e1
+

e4

e2

e1
t ⌦ e4

e2

e3

e1
+

(
e4

e2

e3

e1
(5.38)
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+
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+

e4
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e3
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+

e4

e2

e1
t

1

CA

9
>=

>;
⌦ e4

e2

e3

e1
,

�

2

64 e4
e2

e3

e1

3

75 = e1 ⌦ e4
e2

e3

e1

+

0

@ s s
e1

e3

+
1

2
e1

1

A⌦ e4
e2

e3

e1
+

e4

e2

t
e1

⌦ e4
e2

e3

e1
(5.39)
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+
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Differential equations

Using eq. (9.5) and summing the di↵erent orders in the ✏ expansion, we obtain

dJG = ✏ JG dC(1)
EG

JG +
X

X⇢EG
nX=nG�1

✏ JGX

⇣
dC(1)

X JG +
1

2
dC(1)

EG
JG

⌘

+
X

X⇢EG
nX=nG�2

JGX dC(0)
X JG +

X

X⇢EG
nX=nG�3

JGX

⇣
dC(0)

X JG +
1

2

X

e2EG\X

dC(0)
XeJG

⌘
(9.9)

= ✏ JG dC(1)
EG

JG +
X

X⇢EG
nX=nG�1

✏ JGX

⇣
dC(1)

X JG +
1

2
dC(1)

EG
JG

⌘
+

X

X⇢EG
nX=nG�2

JGX dC(0)
X JG ,

where in the last step we use the fact that the terms with nX = nG � 3 cancel due

to eq. (7.3).

To make these equations more concrete, consider the fully generic pentagon graph. Ac-

cording to eq. (9.7), the corresponding Feynman integral satisfies a di↵erential equation

which can be graphically represented as

d

2

664

3

775 =
X

(ijk)

j

i

k d

2

664

i

k
j

�����
✏0

+
1

2

X

l

i

k
j

l

�����
✏0

3

775

+
X

(ijkl)

i
j
k

l

d

2

664

i

k
j

l

�����
✏0

3

775+ ✏ d

2

664

�����
✏1

3

775 ,

(9.10)

where the labels on the edges of the diagrams denote the set of propagators being cut in

the second entry.

From eqs. (9.7) and (9.9) it follows that the di↵erential equation for JG is determined

by the cuts of JG with at most two uncut propagators. We compute the complete set of

relevant cut integrals in Appendix D and find:

• if nG is odd,

C(1)
EG

JG = log

✓
GramEG

YEG

◆
,

C(0)
EG\eJG = log

 p
YEGGramEG\e �GramEGYEG\e �

p
�GramEGYEG\ep

YEGGramEG\e �GramEGYEG\e +
p
�GramEGYEG\e

!
,

C(0)
EG\{e,f}JG = log

✓
a1 + a2 + a3 + a4 + a5

a1 + a2 + a3 + a4 � a5

◆
,

(9.11)

with the ai given in terms of determinants in eq. (D.28).
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➡         -forms are related to maximal, next-to-maximal (NMax) 
and NNMax cuts.

➡ The relevant cuts can be computed for an arbitrary number 
of external and propagator masses!

➡ We obtain explicit canonical differential equations for ALL 
one-loop integrals!

• We can obtain differential equations [Henn] from the coaction, e.g.:

[Abreu, Britto, 
CD, Gardi]

MaxNMax

NNMax NMax

[Relation to Caron-Huot’s talk?]



One-loop symbols
• From canonical differential equations one can obtain symbols.

where w and w̄ are defined in eq. (3.36). Note that since the homogeneous term in the

recursion is suppressed by a power of ✏, the letter RG,EG corresponding to the maximal

cut does not contribute to O(✏0), and appears for the first time in the linear term in the

✏ expansion. Conversely, we see from the recursion for the symbol that beyond O(✏1) no

new letters will appear.

Since the di↵erential equations simplify in the limit ✏ ! 0, the recursion for the symbol

must simplify in a similar manner. If nG is even, eq. (9.21) reduces to

S(KG) =
X

X⇢EG
nX=nG�2

S(KGX )⌦R
(0)
EG,X , nG even , (9.23)

where the R
(0)
EG,X for nX = nG � 2 are written as cut integrals in eq. (9.16c). This agrees

with the recursion for the symbol of a DCI integral of ref. [58]. The recursion (9.23) reveals

a hierarchical structure in the symbol of KG which is absent if higher orders in ✏ are

included: The k-th entry in the symbol of KG is an integral with 2k propagators of which

2(k� 1) are cut, and these cut propagators are precisely the propagators (cut or uncut) of

the integral in the (k � 1)-th entry. As an example, the symbols of the box and hexagon

integrals in D = 4 and D = 6 dimensions can be written in the form (for simplicity we

only consider massive propagators):

S

0

@

1

A =
X

(ij)

i

j

⌦
j

i
,

S

0

B@

1

CA =
X

(ij;kl)

i

j

⌦ j

i
l

k
⌦

l
k

j
i ,

(9.24)

where the sums extend over all sequences of disjoint pairs of propagators. We stress that

all the graphs in eq. (9.24) are evaluated at ✏ = 0.

If nG is odd, then in the limit ✏ ! 0 the recursion in eq. (9.20) reduces to

S(KG) =
X

X⇢EG
nX=nG�1

S(KGX )⌦R
(0)
EG,X +

X

X⇢EG
nX=nG�2

S(KGX )⌦R
(0)
EG,X , nG odd ,

(9.25)

where the R
(0)
EG,X are written as cut integrals in eq. (9.15b) for nX = nG � 1 and in

eq. (9.15c) for nX = nG � 2. Also in this case the symbol entries exhibit a hierarchy,

with the di↵erence that now integrals with an odd number of edges can also appear. For

example, for the triangle and pentagon integrals we find (restricting the discussion once
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• Example:      (higher orders are similar)again to finite integrals with massive propagators):
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k
j

l
(9.26)

+
X
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i

j

⌦
i

j k ⌦

0

BB@

i

k
j
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1

2

X

(l)

i

k
j
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1
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X
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i

k
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+
1

2
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(l)
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j

l

1
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10 Relation to other coactions

In this section we discuss how the diagrammatic coaction on one-loop integrals is

related to other coactions on integrals and graphs. In particular, we show how the coaction

on one-loop graphs can be derived from a more general conjecture formulated in ref. [36].

This conjecture can be stated as follows: there is a coaction on certain classes of integrals

given by

�

✓Z

�
!

◆
=

X

i

Z

�
!i ⌦

Z

�i

! . (10.1)

The sum runs over a basis of master integrands, the !i. Although the right-hand side

of eq. (10.1) depends on an explicit choice of basis, it is easy to check that the sum is

independent of this choice. The integration contours �i are the master contours, dual to

the master integrands in the following sense,

Pss

✓Z

�i

!j

◆
= �ij , (10.2)

where Pss is the projection onto semi-simple elements, i.e., elements on which the coaction

acts via �(x) = x ⌦ 1. All algebraic numbers and functions are semi-simple [31]. There

are also semi-simple elements that are not algebraic. In particular, we see from eq. (2.16)

that i⇡ is semi-simple. Functions such as classical logarithms and polylogarithms are not

semi-simple, unless they happen to evaluate to powers of 2⇡i. We consider semi-simple

elements as a multiplicative group, and so (i⇡)n is semi-simple for every integer n. Before

we discuss how one can derive the coaction on one-loop (cut) integrals in eq. (4.16) from

eq. (10.1), we find it instructive to show how the coaction on MPLs follows from eq. (10.1).

– 45 –

Dual conformally  
invariant

➡ Bubble and tadpole integrals.
• Symbols only involve:

➡ Max-, NMax-, NNMax-cuts from differential equation.

[Abreu, Britto, CD, Gardi]

(See also [Spradlin, Volovich; Arkani-Hamed, Yuan; Herrmann, Parra-Martinez])



One-loop symbols
again to finite integrals with massive propagators):
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10 Relation to other coactions

In this section we discuss how the diagrammatic coaction on one-loop integrals is

related to other coactions on integrals and graphs. In particular, we show how the coaction

on one-loop graphs can be derived from a more general conjecture formulated in ref. [36].

This conjecture can be stated as follows: there is a coaction on certain classes of integrals

given by

�

✓Z

�
!

◆
=

X

i

Z

�
!i ⌦

Z

�i

! . (10.1)

The sum runs over a basis of master integrands, the !i. Although the right-hand side

of eq. (10.1) depends on an explicit choice of basis, it is easy to check that the sum is

independent of this choice. The integration contours �i are the master contours, dual to

the master integrands in the following sense,

Pss

✓Z

�i

!j

◆
= �ij , (10.2)

where Pss is the projection onto semi-simple elements, i.e., elements on which the coaction

acts via �(x) = x ⌦ 1. All algebraic numbers and functions are semi-simple [31]. There

are also semi-simple elements that are not algebraic. In particular, we see from eq. (2.16)

that i⇡ is semi-simple. Functions such as classical logarithms and polylogarithms are not

semi-simple, unless they happen to evaluate to powers of 2⇡i. We consider semi-simple

elements as a multiplicative group, and so (i⇡)n is semi-simple for every integer n. Before

we discuss how one can derive the coaction on one-loop (cut) integrals in eq. (4.16) from

eq. (10.1), we find it instructive to show how the coaction on MPLs follows from eq. (10.1).
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Conclusion
• Strong evidence that there is a coaction which:

➡ acts on integrals associated to positive geometries,

➡ is consistent with expansion in DimReg.

• When applied to one-loop, it results in a very compact 
representation of the coaction in terms of one-loop integrals and 
their cuts.
➡ Non-trivial role played by relations between cuts/contours.
➡ Proven for finite box and triangle integrals.

➡ In some cases this was proven rigorously! [Brown, Dupont]

[Tapuskovic]

• Ruth’s talk: extension to other classes of positive geometry and 
two-loop integrals.


