Lifting Heptagon Symbols to Functions

Lance Dixon (SLAC)
LD, Y.-T. (Andy) Liu, 20mm.nnnnn Amplitudes 2020

Scattering Amplitudes in Planar N=4 SYM

- Maximally supersymmetric $\mathrm{N}=4$ super-Yang-Mills theory (SYM), gauge group $\operatorname{SU}\left(N_{c}\right)$, in the large N_{c} (planar) limit
- Structure of n-point amplitudes is very rigid:

$$
A_{n}=\sum_{i} \text { rational }_{i} \times \text { transcendental }_{i}
$$

- For planar $\mathrm{N}=4 \mathrm{SYM}$, understand rational structure quite well, focus on the transcendental functions.
- Space of functions is so restrictive, and physical constraints are so powerful, can write L loop answer as linear combination of known weight $2 L$ polylogarithms. Unknown coefficients found simply by solving linear constraints (sometimes a large number)

Hexagon function bootstrap

LD, Drummond, Henn, 1108.4461, 1111.1704;
Caron-Huot, LD, Drummond, Duhr, von Hippel, McLeod, Pennington, 1308.2276, 1402.3300, 1408.1505, 1509.08127; 1609.00669;

Caron-Huot, LD, Dulat, von Hippel, McLeod, Papathanasiou, 1903.10890 and 1906.07116; LD, Dulat, 20 mm. nnnnn (NMHV 7 loops)

Use analytical properties of perturbative amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$ to determine them directly, without ever peeking inside the loops

First step toward doing this nonperturbatively
 (no loops to peek inside) for general kinematics

But at function level it was mostly limited to 6 point amplitudes!

High loop orders beyond 6 points

- Cluster algebras provide strong clues to right polylogarithmic function space Golden, Goncharov, Paulos, Spradlin, Volovich, Vergu, 1305.1617, 1401.6446, 1411.3289; Drummond, Foster, Gurdogan, 1710.10953
- Symbol of 3-loop MHV 7-point amplitude bootstrapped first.
More rigid than 6 points; fewer constraints needed!
Drummond, Papathanasiou, Spradlin 1412.3763
- With Steinmann relations, could go to 4-loop MHV and 3-loop non-MHV symbol LD, Drummond, McLeod, Harrington, Papathanasiou, Spradlin, 1612.08976
- Extended Steinmann \rightarrow 4-loop NMHV symbol Drummond, Gurdogan, Papathanasiou, 1812.04640
- Still need to go from symbols $\boldsymbol{\rightarrow}$ actual functions!

Heuristic view of

 hexagon or heptagon function space weight

Why functions?

Motivation 1: "LHC doesn't measure symbols"

Lots of plots available for $n=6$, almost nothing for $n=7$

$$
n=6, L=1,2,3,4,5,6,7
$$

LD, Dulat, 20mm.nnnnn; see also Caron-Huot, LD, Dulat, von Hippel, McLeod, Papathanasiou, 1903.10890
L. Dixon

Lifting Heptagons

$n=7, L=2$
Golden, Spradlin, 1406.2055; see also Golden, McLeod, 1810.12181; Bourjaily, Volk, von Hippel, 1912.05690

Motivation 2: Every Superhero/amplitude needs an Origin Story

- For $n=6$, when all 3 cross ratios $u_{i} \rightarrow 0$, logarithm of MHV amplitude is remarkably simple, $\propto c(\zeta) \ln ^{2} u_{i}$ through $L=7$ Caron-Huot, LD, Dulat, von Hippel, McLeod, Papathanasiou, 1960.07116
- Zeta-valued coefficients now understood to all orders Basso, LD, Papathanasiou, 2001.05460; hexagon origin story next by B. Basso
- How about $\boldsymbol{n}=\mathbf{7 ?}$
- Analogous origin (due to Gram det): first $6 u_{i} \rightarrow 0, u_{7} \rightarrow 1$
- MHV symbol, known to 4 loops, is consistent with this, but provides no ζ-valued information
LD, Drummond, Harrington, McLeod, Papathanasiou, Spradlin, 1612.08976
L. Dixon Lifting Heptagons

Amplitudes 2020

Motivation 3: Near collinear (OPE) limit

Test full Pentagon OPE framework Basso, Sever, Vieira, 1303.1396,... to higher loop orders at function level

$$
\begin{aligned}
\mathcal{W}_{\mathrm{hep}}= & \sum_{\mathbf{a}, \mathbf{b}} \int d \mathbf{u} d \mathbf{v} P_{\mathbf{a}}\left(0 \mid \mathbf{u} P_{\mathbf{a b}}(\overline{\mathbf{u}} \mid \mathbf{v}) P_{\mathbf{b}}(\overline{\mathbf{v}} \mid 0)\right. \\
& e^{-E(\mathbf{u}) \tau_{1}+i p(\mathbf{u}) \sigma_{1}+i m_{1} \phi_{1}-E(\mathbf{v}) \tau_{2}+i p(\mathbf{v}) \sigma_{2}+i m_{2} \phi_{2}}
\end{aligned}
$$

Motivation 4: Multi-Regge limit

- Test recent all orders conjecture for central emission block, which first appears at $n=7$
Del Duca, Druc, Drummond, Duhr, Dulat, Marzucca, Papathanasiou, Verbeek, 1912.00188

Motivation 5: Coaction Principle

- Restricted set of zeta values \& functions appear for $n=6$
- For example, no independent ζ_{2} or ζ_{3}

Caron-Huot, LD, Dulat, von Hippel, McLeod, Papathanasiou, 1906.07116

- In line with previous observations of a coaction principle for ϕ^{4} theory, electron $g-2$
Schnetz, 1302.6445; Brown, 1512.06409; Panzer, Schnetz, 1603.04289; Schnetz, 1711.05118
- Lower loop/weight "missing" values constrain/predict missing values at higher loops.
- What happens for $n=7$?

Outline of rest of talk

1. Iterated integral/symbol refresher
2. "co" surface interpolating between origin and soft/collinear limits
3. Fixing ζ values using branch cut conditions
4. Fixing amplitudes
5. Plots \& comments
6. Conclusions

Iterated integrals

Chen; Goncharov; Brown

- Generalized polylogarithms, or n-fold iterated integrals, or weight n pure transcendental functions f.
- Define by derivatives:

$$
d f=\sum_{s_{k} \in \mathcal{S}} f^{s_{k}} d \ln s_{k}
$$

$\mathcal{S}=$ finite set of rational expressions, "symbol letters", and $f^{s_{k}} \equiv\{n-1,1\}$ component of a "coproduct" Δ $f^{s_{k}}$ are also pure functions, weight $n-1$. [still contain ζ values]

- Iterate: $d f^{s_{k}} \Rightarrow f^{s_{j}, s_{k}} \equiv\{n-2,1,1\}$ component - Symbol $=\{1,1, \ldots, 1\}$ component (maximally iterated) [no ζ 's] Goncharov, Spradlin, Vergu, Volovich, 1006.5703

Symbol letters = polylog arguments

Projectively invariant ratios of 4-brackets of momentum twistors Z_{i} Hodges, 0905.1473

$$
<i j k l>\equiv \operatorname{det}\left(Z_{i} Z_{j} Z_{k} Z_{l}\right)
$$

- Hexagon, 3 variables ($u, v, w), 9$ letters:

$$
\mathcal{S}=\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}
$$

$u=\frac{\langle 1236><3456\rangle}{\langle 1346><2356\rangle} \quad 1-u=\frac{\langle 1356\rangle<2346\rangle}{\langle 1346><2356\rangle} \quad y_{u}=\frac{\langle 1236><2456><1345\rangle}{\langle 1235><1246><3456\rangle}$
+6 more from cyclic permutations

Goncharov, Spradlin, Vergu, Volovich, 1006.5703;
LD, Drummond, Henn, 1108.4461

Heptagon: 6 variables, u_{i}, 42 letters

Golden, Goncharov, Paulos, Spradlin, Volovich, Vergu, 1305.1617, 1401.6446, 1411.3289; Drummond, Papathanasiou, Spradlin 1412.3763

$$
\begin{aligned}
a_{11} & =\frac{\langle 1234\rangle\langle 1567\rangle\langle 2367\rangle}{\langle 1237\rangle\langle 1267\rangle\langle 3456\rangle} \\
a_{21} & =\frac{\langle 1234\rangle\langle 2567\rangle}{\langle 1267\rangle\langle 2345\rangle} \\
a_{31} & =\frac{\langle 1567\rangle\langle 2347\rangle}{\langle 1237\rangle\langle 4567\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& a_{41}=\frac{\langle 2457\rangle\langle 3456\rangle}{\langle 2345\rangle\langle 4567\rangle} \\
& a_{51}=\frac{\langle 1(23)(45)(67)\rangle}{\langle 1234\rangle\langle 1567\rangle} \\
& a_{61}=\frac{\langle 1(34)(56)(72)\rangle}{\langle 1234\rangle\langle 1567\rangle}
\end{aligned}
$$

$\langle a(b c)(d e)(f g)\rangle \equiv\langle a b d e\rangle\langle a c f g\rangle-\langle a b f g\rangle\langle a c d e\rangle$

$$
u_{1}=\frac{a_{17}}{a_{13} a_{14}}
$$

plus cyclic, $i \rightarrow i+1(\bmod 7), a_{j i} \rightarrow a_{j, i+1}$
$(6 \times 7=42$ letters $)$
Gram determinant $4^{\text {th }}$ order constraint $G\left(u_{i}\right)=0$

Hexagon kinematics

Very useful 2d slice of heptagon kinematics: "co" surface on boundary interpolates between soft/collinear limits and origin

Symbol letters on co surface

$$
\left\{u_{1}, u_{2}, u_{5}, u_{6}, u_{3}, 1-u_{3}, u_{4}, 1-u_{4}, 1-u_{7}\right\}
$$

- Remarkably simple! In fact, coefficients of $1-u_{7}$ coproduct always vanish, as a branch-cut constraint.
- Function space is just single-argument harmonic polylogs:
$\left\{\ln \left(u_{i}\right), i=1,2,5,6\right\} \otimes\left\{H_{\vec{w}}\left(u_{3}\right)\right\} \otimes\left\{H_{\vec{w}}\left(u_{4}\right)\right\}, \quad w_{k} \in\{0,1\}$
- "co" surface is two copies of 6-point $(u, 0,0)$ line

co surface as a triple scaling limit

- BSV parametrization: $T_{i}, S_{i}, F_{i}, i=1,2$

Basso, Sever, Vieira 1306.2058

$$
\left(\begin{array}{l}
Z_{1}
\end{array} \ldots Z_{7}\right)=\left(\begin{array}{ccccccc}
\frac{S_{1}}{\sqrt{F_{1}}} & 1 & -1 & -S_{2} \sqrt{F_{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{T_{2} \sqrt{F_{2}}} & \frac{S_{2}+T_{2} F_{2}}{T_{2} S_{2} \sqrt{F_{2}}} & 1 & \frac{1}{S_{1} \sqrt{F_{1}}} \\
\frac{\sqrt{F_{1}}}{T_{1}} & 0 & 0 & -\frac{1}{T_{2} \sqrt{F_{2}}} & -\frac{1}{T_{2} \sqrt{F_{2}}} & 0 & \frac{\sqrt{F_{1}}}{T_{1}} \\
T_{1} \sqrt{F_{1}} & 0 & 1 & \frac{1+T_{2} S_{2} F_{2}+T_{2}^{2}}{T_{2} \sqrt{F_{2}}} & \frac{1}{T_{2} \sqrt{F_{2}}} & 0 & 0
\end{array}\right)
$$

- OPE limit: $T_{i} \rightarrow \in T_{i}, \quad \epsilon \rightarrow 0$
- Double scaling limit: $T_{i} \rightarrow \epsilon T_{i}, \quad F_{i} \rightarrow \frac{F_{i}}{\epsilon}, \quad \epsilon \rightarrow 0$
- co limit: $T_{i} \rightarrow \epsilon T_{i}, S_{i} \rightarrow \frac{S_{i}}{\epsilon}, F_{i} \rightarrow \frac{F_{i}}{\epsilon^{2}}, \quad \epsilon \rightarrow 0$
- Suggests studying similar limits for $n>7$

Branch cut conditions

- The way to fix all ζ values, build consistent functions LD, Drummond, von Hippel, Pennington, 1308.2276
- Functions $\zeta_{m} \ln s_{k}$ for $s_{k} \neq u_{k}$ have unphysical branch cuts. Not independent functions, but get "attached" to other functions to make their branch cuts all physical.
- Where to fix? Near $s_{\boldsymbol{k}}=0$, initially.
- Hexagon natural base point: $(u, v, w)=(1,1,1)$
- Finite, dihedrally invariant, all hexagon functions evaluate to multiple zeta values (MZV's) there.
- "Bulky" choice of branch cut conditions: no $\ln \left(1-u_{i}\right)$ at $(1,1,1)$

$$
\text { no } \ln \left(y_{u}\right) \text { or } \ln \left(y_{v}\right) \text { at }\left.(u, u, 1)\right|_{u \rightarrow 0}
$$

- Transport results back up ($u, u, 1$) line to ($1,1,1$); remarkably only restricted set of MZV's appear there: 1, $\zeta_{2},\left[\begin{array}{ll}n o & \zeta_{3}\end{array}\right], \zeta_{4}, 5 \zeta_{5}-2 \zeta_{2} \zeta_{3}, \ldots$
Caron-Huot, LD, Dulat, von Hippel, McLeod, Papathanasiou, 1906.07116

Hexagon kinematics

bulk: $u, v, w>0$

7-point branch cut conditions

- No simple bulk analog of $(1,1,1)$ for heptagons, so work on boundary (co surface)
- Vanishing of $\ln \left(1-u_{7}\right)$ on entire "co" surface
- No $\ln \left(1-u_{3}\right)$ at $u_{3}=1$
- No $\ln \left(1-u_{4}\right)$ at $u_{4}=1$
- Also one branch cut condition on nearby "soft" surface (or can apply additional "co" conditions)
- Parity-odd functions vanish at $u_{3}=u_{4}=1$ because this point touches 6-point $\Delta=0$ surface
- These conditions, along with integrability and extended Steinmann relations, suffice to fix all ζ values and fully define heptagon functions
- Big computational assist from previous symbol level information, complete through weight 6
LD, Drummond, McLeod, Harrington, Papathanasiou, Spradlin, 1612.08976
L. Dixon Lifting Heptagons

Many interesting surfaces intersect "co"

- For example, cancellation of spurious poles in the NMHV amplitude implies
LD, Drummond, Harrington, McLeod, Papathanasiou, Spradlin, 1612.08976
Spurious I: $\left.E_{47}\right|_{<1356>=0}=0$
Spurious II: $\left.\left(E_{23}-E_{25}\right)\right|_{<1467>=0}=0$
- $<1356>=0$ intersects "co" at $u_{4}=1$
- $<1467>=0$ intersects "co" at $u_{3}=1$
- Easy to impose these constraints at function level, and uniquely determine MHV and NMHV amplitudes, using also their soft/collinear limits

$R_{7}^{(2)}$

- For generic kinematics, Golden-Spradlin formula has 49,677 terms, 112 featuring the non-classical polylog

$$
L_{2,2}(x, y) \equiv \frac{1}{2} \int_{0}^{1} \frac{d t}{t}\left[\operatorname{Li}_{2}(-t x) \operatorname{Li}_{1}(-t y)-\operatorname{Li}_{2}(-t y) \operatorname{Li}_{1}(-t x)\right]
$$

- When we drop onto the co surface, the $112 L_{2,2}$ functions collapse to 3 pairs, which can all be removed using the identity

$$
\begin{aligned}
L_{2,2}(x, y)+L_{2,2}(1 / y, 1 / x)= & 3 \operatorname{Li}_{4}(x / y)+\operatorname{Li}_{4}(-x)-\operatorname{Li}_{4}(-y) \\
& -\ln (x / y) \operatorname{Li}_{3}(x / y)-\ln y \operatorname{Li}_{3}(-x)+\ln x \operatorname{Li}_{3}(-y) \\
& +\frac{1}{4}\left(\ln ^{2} y+2 \zeta_{2}\right) \operatorname{Li}_{2}(-x)-\frac{1}{4}\left(\ln ^{2} x+2 \zeta_{2}\right) \operatorname{Li}_{2}(-y) \\
& +\frac{1}{24} \ln ^{2} y \ln (x / y)(\ln y-3 \ln x)-\frac{\zeta_{2}}{4} \ln (x / y)(\ln x-3 \ln y)-3 \zeta_{4}
\end{aligned}
$$

$R_{7}^{(2)}$ on the co surface

- Using also standard classical polylog identities, Golden-Spradlin expression collapses to:

$$
R_{7}^{(2)}\left(u_{1,2,5,6} \ll 1, u_{7}=1\right)=6 \operatorname{Li}_{4}\left(\frac{-u_{3}}{1-u_{3}}\right)-\frac{1}{2}\left[\operatorname{Li}_{2}\left(\frac{-u_{3}}{1-u_{3}}\right)\right]^{2}-2 \ln \left(\frac{u_{3}}{u_{1} u_{2} u_{4}}\right) \operatorname{Li}_{3}\left(\frac{-u_{3}}{1-u_{3}}\right)
$$

$$
+\left[\ln \left(\frac{1-u_{3}}{u_{1} u_{2} u_{4}}\right) \ln u_{3}+\ln \left(u_{1} u_{4}\right) \ln u_{2}-\frac{1}{2} \ln ^{2}\left(1-u_{3}\right)-3 \zeta_{2}\right] \operatorname{Li}_{2}\left(\frac{-u_{3}}{1-u_{3}}\right)
$$

$$
+\frac{1}{8} \ln ^{4}\left(1-u_{3}\right)-\left[\frac{1}{6} \ln ^{2}\left(1-u_{3}\right)+\zeta_{2}\right] \ln \left(1-u_{3}\right)\left[\ln u_{3}+2 \ln \left(u_{1} u_{2} u_{4}\right)\right]
$$

$$
+\frac{1}{2} \ln ^{2}\left(1-u_{3}\right)\left[\ln u_{1} \ln u_{2}+\ln \left(u_{1} u_{2}\right) \ln u_{3}+\ln \left(u_{2} u_{3}\right) \ln u_{4}+3 \zeta_{2}\right]
$$

$$
-\ln \left(1-u_{3}\right) \ln u_{3} \ln u_{2} \ln \left(u_{1} u_{4}\right)
$$

$$
+\frac{\zeta_{2}}{2}\left[\left(\ln u_{4}+2 \ln \left(u_{1} u_{2} u_{5}\right)\right) \ln u_{3}+2 \ln u_{1} \ln u_{2}\right]+\frac{17}{4} \zeta_{4}
$$

$$
+\left\{u_{1} \leftrightarrow u_{6}, u_{2} \leftrightarrow u_{5}, u_{3} \leftrightarrow u_{4}\right\}
$$

"Diagonal line" in co surface

$$
\begin{aligned}
R_{7}^{(2)}(u, u, u, u, u, u, 1)= & 12 \operatorname{Li}_{4}\left(\frac{-u}{1-u}\right)-\left[\operatorname{Li}_{2}\left(\frac{-u}{1-u}\right)\right]^{2}+8 \ln u \operatorname{Li}_{3}\left(\frac{-u}{1-u}\right) \\
& -\left(2 \ln ^{2} u-2 \ln u \ln (1-u)+\ln ^{2}(1-u)+6 \zeta_{2}\right) \operatorname{Li}_{2}\left(\frac{-u}{1-u}\right) \\
& -\frac{1}{12} \ln (1-u)\left(48 \ln ^{3} u-60 \ln ^{2} u \ln (1-u)+28 \ln u \ln ^{2}(1-u)-3 \ln ^{3}(1-u)\right) \\
& -\zeta_{2} \ln (1-u)(14 \ln u-3 \ln (1-u))+9 \zeta_{2} \ln ^{2} u+\frac{17}{2} \zeta_{4}
\end{aligned}
$$

- Doesn't really make sense unless $u \ll 1$, since Gram determinant $G(u) \propto u$ doesn't vanish. But we can still plot it for smallish u
$R_{7}^{(2)}$ on $\left(u, u, u, u, u, u, \frac{\left(1-u-u^{2}\right)^{2}}{1-2 u^{2}}\right)$ vs. on co surface $(u, u, u, u, u, u, 1)$

Remainder Function On/Near "co" Surface

[^0] co surface

- In fact, we can compute any amplitude on $\left(u, u, u, u, u, u, \frac{\left(1-u-u^{2}\right)^{2}}{1-2 u^{2}}\right)$, as a power series expansion around $u=0$.
- Integration constants fixed at origin, ($0,0,0,0,0,0,1$).
- Forty terms suffice to converge past end of positive region at $u=0.35689 \ldots$

"High" Order Perturbative Behavior

- Planar $N=4$ SYM has finite radius of convergence of perturbative expansion (unlike QCD, QED, whose perturbative series are asymptotic)
- For BES solution to cusp anomalous dimension, using coupling $g^{2}=\frac{\lambda}{16 \pi^{2}}$, this radius is $\frac{1}{16}$
- Ratio of successive terms $\frac{\Gamma_{\text {cusp }}^{(L)}}{\Gamma_{\text {cusp }}^{(L-1)}} \rightarrow-16$
- Based on 6-point experience, expect ratios of successive loop orders for amplitudes to also approach -16, at least in the bulk

Logarithm of MHV Amplitude Ratios on Symmetric Line $\left(u, u, u, u, u, u, \frac{\left(1-u-u^{2}\right)^{2}}{1-2 u^{2}}\right)$

NMHV successive loop ratios, through 3 loops

3 of 15 components shown
BDS-like Normalized NMHV Amplitude Ratios on Symmetric Line $\left(u, u, u, u, u, u, \frac{\left(1-u-u^{2}\right)^{2}}{1-2 u^{2}}\right)$
$(47)=[12356]$
$(67)=[12345]$

BDS-like Normalized NMHV Amplitude Ratios on Symmetric Line $\left(u, u, u, u, u, u, \frac{\left(1-u-u^{2}\right)^{2}}{1-2 u^{2}}\right)$

L. Dixon Lifting Heptagons

BDS-like Normalized NMHV Amplitude Ratios on Symmetric Line $\left(u, u, u, u, u, u, \frac{\left(1-u-u^{2}\right)^{2}}{1-2 u^{2}}\right)$

Amplitudes 2020

"Self-crossing" surface

$\rightarrow 4$ parameter surface

$$
u_{7}=1, \quad u_{3}=1-\frac{u_{1} u_{5}}{u_{6}}, \quad u_{4}=1-\frac{u_{2} u_{6}}{u_{1}}
$$

- Work on Euclidean sheet, as another example of bulk kinematics
- Intersects co surface at $u_{3}=u_{4}=1$
- For simplicity, consider two different 1D "lines" in this surface:

$$
\begin{gathered}
(u, u, 1-u, 1-u, u, u, 1) \text { and }\left(\frac{4 u}{(1+u)^{2}}, u, 1-u, 1-u, u, \frac{4 u}{(1+u)^{2}}, 1\right) \\
\Delta \neq 0 \quad \Delta=0
\end{gathered}
$$

- Parity-odd functions nonvanishing vs. vanishing
- Both lines intersect co surface at $u=0$, and leave Euclidean region at same soft limit point, $u=1 \Rightarrow(1,1,0,0,1,1,1)$.
- Symbol alphabet in $\Delta \neq 0$ case still has square roots, but can integrate up as power series around both $u=0$ and $u=1$.

L. Dixon Lifting Heptagons

Amplitudes 2020

Coaction Principle?

- By taking coproducts of 4 loop MHV and 3 loop NMHV amplitudes, we find that ζ_{3} is an independent constant function in the heptagon function space
- Big surprise, because ζ_{3} is not independent at 6 points; it does not even appear as a value of any hexagon function at $(u, v, w)=(1,1,1)!\quad$ CDDvHMP, 1906.07116
- ζ_{2} is not independent, just as at 6 points
\rightarrow coaction principle can be nontrivial (at function level)
- ζ_{4} is independent, just as at 6 points
- Can't yet determine independence of ζ_{5} or $\zeta_{2} \zeta_{3}$; need at least 4 loop NMHV amplitude
- But so far it seems like 7 points and 6 points will behave quite differently

Lightning dive to the origin

in progress also with B. Basso and G. Papathanasiou

6-points: $\ln \mathcal{E}^{M H V}$ is quadratic in logarithms through at least 9 loops, and almost certainly to all orders CDDvHMP, 1903.10890, next talk by Benjamin Basso
7-points: $\ln \mathcal{E}^{M H V}$ is quadratic in logarithms through at least 4 loops

Conclusions

- Heptagon function bootstrap now well underway
- Helped greatly to find a simple "co" surface on the boundary where enough branch cut conditions can be imposed to fix all zeta values
- Can integrate up along different lines into the bulk
- co surface touches many interesting regions (origin, MRK, OPE, ...) and will allow zeta values to be fixed there too
- Similar multi-scaling surfaces may be very useful for $n>7$ too!

Extra Slides

Dual conformal invariance

- Wilson n-gon invariant under inversion:

$$
x_{i j}^{2}=\left(k_{i}+k_{i+1}+\cdots+k_{j-1}\right)^{2} \equiv s_{i, i+1, \cdots, j-1}
$$

$$
x_{i}^{\mu} \rightarrow \frac{x_{i}^{\mu}}{x_{i}^{2}}, \quad x_{i j}^{2} \rightarrow \frac{x_{i j}^{2}}{x_{i}^{2} x_{j}^{2}}
$$

- Fixed, up to functions of invariant cross ratios:

$$
u_{i j k l} \equiv \frac{x_{i j}^{2} x_{k l}^{2}}{x_{i k}^{2} x_{j l}^{2}}
$$

- $x_{i, i+1}^{2}=k_{i}^{2}=0 \quad \rightarrow$ no such variables for $n=4,5$

Removing Divergences

- On-shell amplitudes IR divergent due to long-range gluons
- Polygonal Wilson loops UV divergent at cusps, anomalous dimension $\Gamma_{\text {cusp }}$
- known to all orders in planar $\mathrm{N}=4 \mathrm{SYM}$:

Beisert, Eden, Staudacher, hep-th/0610251

- Both removed by dividing by BDS-like ansatz Bern, LD, Smirnov, hep-th/0505205, Alday, Gaiotto, Maldacena, 0911.4708
- Normalized [MHV] amplitude is finite, dual conformal invariant.
- BDS-like also maintains important relation due to causality (Steinmann).

$$
\mathcal{E}_{n}\left(u_{i}\right)=\lim _{\epsilon \rightarrow 0} \frac{\mathcal{A}_{n}\left(s_{i, i+1}, \epsilon\right)}{\mathcal{A}_{n}^{\text {BDS-like }}\left(s_{i, i+1}, \epsilon\right)}=\exp \left[\mathcal{R}_{n}+\frac{\Gamma_{\text {cusp }}}{4} \varepsilon_{n}^{(1)}\right]
$$

BDS-like ansatz $(n=6)$

$$
\frac{\mathcal{A}_{6}^{\mathrm{BDS}-\mathrm{like}}}{\mathcal{A}_{6}^{\mathrm{MHV}(0)}}=\exp \left[\sum_{L=1}^{\infty} a^{L}\left(f^{(L)}(\epsilon) \frac{1}{2} \hat{M}_{6}(L \epsilon)+C^{(L)}\right)\right]
$$

where

$$
f^{(L)}(\epsilon)=\frac{1}{4} \gamma_{K}^{(L)}+\epsilon \frac{L}{2} \mathcal{G}_{0}^{(L)}+\epsilon^{2} f_{2}^{(L)}
$$

are constants, and
$\hat{M}_{6}(\epsilon)=M_{6}^{1-100 p}(\epsilon)+Y(u, v, w)$
$=\sum_{i=1}^{6}\left[-\frac{1}{\epsilon^{2}}\left(1-\epsilon \ln s_{i, i+1}\right)-\ln s_{i, i+1} \ln s_{i+1, i+2}+\frac{1}{2} \ln s_{i, i+1} \ln s_{i+3, i+4}\right]+6 \zeta_{2}$

- Y is dual conformally invariant part of one-loop amplitude $M_{6}^{1-\text { loop }}$ containing all 3-particle invariants:

$$
Y(u, v, w)=-\mathcal{E}^{(1)}=-\mathrm{Li}_{2}\left(1-\frac{1}{u}\right)-\operatorname{Li}_{2}\left(1-\frac{1}{v}\right)-\operatorname{Li}_{2}\left(1-\frac{1}{w}\right)
$$

- More minimal BDS-like ansatz contains all IR poles, but no 3-particle invariants.
L. Dixon Lifting Heptagons

Branch cut condition

- All massless particles \rightarrow all branch cuts start at origin in

$$
s_{i, i+1}, \quad s_{i, i+1, i+2}
$$

- 6-point: Branch cuts all start from 0 or ∞ in

$$
u=\frac{s_{12} s_{45}}{s_{123} s_{345}} \quad \text { or } v \text { or } w
$$

\rightarrow Only 3 weight 1 functions, not 9 :

- 7-point: Only 7 weight 1 functions, not 42
- Discontinuities commute with branch cuts
- Require derivatives of higher weight functions to obey branch-cut condition too \rightarrow very powerful constraint.

Steinmann relations

Steinmann, Helv. Phys. Acta (1960) Bartels, Lipatov, Sabio Vera, 0802.2065

- Amplitudes should not have overlapping branch cuts:

Not Allowed

Allowed
can't apply to 2 particle cuts in massless case because they are not independent
$\operatorname{Disc}_{s_{234}}\left[\operatorname{Disc}_{s_{123}} \mathcal{E}(u, v, w)\right]=0$
$-\begin{aligned} & \text { Violated by BDS } \\ & \text { normalized amplitudes! }\end{aligned}$
L. Dixon Lifting Heptagons

Amplitudes 2020

Steinmann constraints $(n=6)$

S. Caron-Huot, LD, M. von Hippel, A. McLeod, 1609.00669
$\operatorname{Disc}_{s_{234}}\left[\operatorname{Disc}_{s_{123}} \mathcal{E}(u, v, w)\right]=0$

+ cyclic conditions

$$
u=\frac{s_{12} s_{45}}{s_{123} s_{345}} \quad v=\frac{s_{23} s_{56}}{s_{234} s_{123}} \quad w=\frac{s_{61} s_{34}}{s_{345} s_{234}}
$$

$\ln ^{2} u \quad \ln ^{2} \frac{u v}{w} \quad \frac{u v}{w}=\frac{s_{12} s_{23} s_{45} s_{56}}{s_{34} s_{61} s_{123}^{2}}$

Weight 2 functions restricted to 6 out of 9 :
Analogous constraints for $n=7$

LD, J. Drummond, T. Harrington, A. McLeod, G. Papathanasiou, M. Spradlin, 1612.08976

[^0]: $\stackrel{\circ}{ }$ Golden-Spradlin 1406.2055

