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Motivation for Studying Discontinuities of Amplitudes

● Discontinuities of amplitudes related to cuts of
corresponding Feynman diagram.

– Cut computation often easier.
– ReconstructM from its discontinuities using a basis of

functions for Feynman integrals.

DiscM=M∣+iε −M∣−iε = −∑ cutM

● What can we learn from studying sequential
discontinuities ofM in different kinematic regions?

● How do we relate sequential discontinuities ofM to cuts?

● What do we gain from a systematic treatment of
computing discontinuities?
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Outline

1. Discontinuities
● Need more powerful tools than ±iε to define sequential
discontinuities.

● Define discontinuities in channels using monodromies.
● Kinematic regions important for definitions.

2. Relations between discontinuities and cuts
● Use Time-Ordered Perturbation Theory (TOPT) to
prove results.

● Previous work: Sequential discontinuities in different
channels.

● New results for relations between sequential
discontinuities in the same channel and multiple cuts.

● New proof of the Steinmann relations.
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Problems with iε Definition of Discontinuity

DiscM=M∣+iε −M∣−iε only defined on the branch cut:

Discs ln s = ln(s + iε) − ln(s − iε) = 2πiθ(−s)

Discs ln2 s = ln2
(s + iε) − ln2

(s − iε) = 4πiθ(−s) ln ∣s∣
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● Discs lnn(s) only defined on the negative real axis, not
on the complex plane.

● What is the iε prescription of DiscsM?

Need a better definition of Disc to take
sequential discontinuities. 3



Problems with iε Definition of Discontinuity

Want to study DiscM in each Mandelstam separately

p1

p2 p3

p4

s

t

=M(p2j , s, t, u)

Intiuitvely: Define discontinuity in a channel s as

DiscsM=M(p2j , s + iε, t, u) −M(p2j , s − iε, t, u)

● Agrees with cuts in only s?
● Problem: Mandelstams are not all independent:

s + t + u = ∑p2j

Discs should be invariant under rewriting M.
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Definition of Discontinuity

Resolution: Abandon the ±iε notation, take monodromies.
Definition: DiscsM is the monodromy ofM around s = 0,
starting in Rs.
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● Monodromy: How a function changes when analytically
continuing around a singularity.

● Rs: Region in space of Mandelstams where s > 0, all other
Mandelstams si,j,... < 0.
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Example: Definition of Discontinuity of ln

1

s

γ0

γ−1
γ−2

Re s

Im s

ln(s + iε) = lnγ0s = ∫
γ0

dx

x
ln(s − iε) = lnγ−1s = ∫

γ−1

dx

x

Sequential discontinuities natural:

Discslnγ0s = lnγ0s − lnγ−1s Discslnγ−1s = lnγ−1s − lnγ−2s

Disc2slnγ0s = (lnγ0s − lnγ−1s) − (lnγ−1s − lnγ−2s)
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Definition of Discontinuity in a Channel

DiscsM is the monodromy ofM around s = 0, starting in Rs.

● Agrees with the iε definition in Rs:

[DiscsM]Rs = [M∣+iε −M∣−iε]Rs

● Agrees with cuts in s, since all other cuts in Rs vanish:

[DiscsM]Rs = −∑CutsM

– Cuts computed by putting particles on-shell with positive
energy flow across cut.

● Results in a function on complex space.
● Machinery: monodromy operator.

[DiscsM]Rs = [(1 −M↺s
0
)M]

Rs

– Calculation of monodromies becomes algebraic.
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Example: Discontinuities, Monodromies and Cuts

M=
p

∝ −
i

16π2
log (−p2 − iε)

(1 −M↺p2

0

)M∝ −
i

16π2
(−2πi) = −

1

8π

[DiscM]
Rp2 ∝ −

i

16π2
(−2πi)Θ(p0) = −

1

8π
Θ(p0)

CutM∝
p

=
1

8π
Θ(p0)
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Traditional Cutting Rules

DiscM=M∣+iε −M∣−iε = −∑CutM

p1

p2

p3

C

+iε −iε

L.h.s. of cut has +iε, r.h.s. of cut has −iε.

Proofs:
● Cutkosky, using the Landau equations.
● t’Hooft and Veltman, using the largest time equation.
● Time-ordered perturbation theory (TOPT).

– Most transparent and easily generalizable.
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Review of Time-Ordered Perturbation Theory (TOPT)

Sum of v! TOPT diagrams = Feynman diagram

p p

k

p − k

+

p

p − k
k

p

p p

k

p − k

TOPT diagrams Feynman diagrams
● Time passes from left to right ● Vertices are not ordered

● All particles on-shell:

E2
= p⃗2 +m2

● Internal particles virtual:

E2
≠ p⃗2 +m2

● p⃗ conservation at each vertex ● p⃗ conservation at each vertex

● Not E conservation at each
vertex

● E conservation at each vertex

● Overall E & p⃗ conservation ● Overall E & p⃗ conservation

● Individual diagrams not .....
Lorentz invariant

● Manifestly Lorentz-invariant

● Good for proofs & intuition ● Good for calculations
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Review of Time-Ordered Perturbation Theory (TOPT)

Sum of v! TOPT diagrams = Feynman diagram

p p

k

p − k

+

p

p − k
k

p

p p

k

p − k

∫
d3k

(2π)3
1

2ωk

1

2ωp−k
[

1

Ep − (ωk + ωp−k) + iε
+

1

Ep − (ωk + ωp−k + 2ωp) + iε
]

= ∫
d4k

i(2π)4
1

k2 −m2
1 + iε

1

(p − k)2 −m2
2 + iε
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Cutting Rules in TOPT

Advantages to TOPT:

● Energies are independent, Mandelstams are not.
● One delta function for each cut.

– Various numbers of on-shell Feynman propagators for each
cut through a Feynman diagram.

p1

p2

p3

C1 C2 C3 C4

M∣+iε ∝ ∫
1

E1 − ω1 + iε

1

E1 − ω2 + iε

1

E1 −E2 − ω3 + iε

1

E1 −E2 − ω4 + iε

Relate DiscM to cuts using 1
Ei+iε −

1
Ei−iε = −2πiδ (Ei)
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Results Derived using TOPT

Same channel sequential discontinuities: Equal to a sum of
diagrams cut multiple times with a combinatorial factor.

[Discms M]Rs = (1 −M↺s
0
)
m
M

= ∑
k=m

⎧⎪⎪
⎨
⎪⎪⎩

m

∑
`=1

(−1)`
⎛

⎝

m

`

⎞

⎠
`k

⎫⎪⎪
⎬
⎪⎪⎭

[M
+
k-cuts]Rs

Different channel sequential discontinuities: Equal to a
sum of diagrams cut multiple times in a region Rst where both cuts
can be computed.

[DisctDiscsM]Rst = (1 −M↺t
st
)(1 −M↺s

st
)M

= [∑
k=1
∑
`=1

(−1)k+`M+
k − s-cuts and ` − t-cuts]

Rst

M+: M computed with all +iε.
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Previous work: Discontinuities in Different Channels

Formula presented in Abreu et al. [1]:

Cuts1,...,skM= (−1)
kDiscs1,...,skM

● Cuts1,...,sk computed by putting particles on-shell with
generalized +iε rules in the region

Rs1,...,sk = {s1, . . . , sk > 0, sk+1, . . . , sm < 0}

● Discs1,...,sk computed by taking Discs1 in Rs1 , then Discs2 in
Rs1,s2 etc.

● Checked in multiple examples in [1]: One loop triangle, two loop
triangle, boxes.

– Can check our expressions using examples in [1].

[1] Abreu, S., Britto, R., Duhr, C. and Gardi, E., JHEP 10, 125 (2014),
arxiv:1401.3546 [hep-th]
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Sequential Discontinuities - Chain of Bubbles

M= p→
A B C ∝ ln3

(−p2 − iε)

DiscM= p→
A B C +⋯

∝ 3 (−2πi) ln2
(−p2 − iε) − 3(−2πi)2 ln (−p2 − iε) + (−2πi)3

Disc2M= 2 p→
A B C +⋯

∝ 6 (−2πi)
2

ln (−p2 − iε) − 6(−2πi)3

Disc3M= 6 p→
A B C ∝ 6 (−2πi)

3

Discontinuities computed using monodromy matrices
= sum of multiple cut diagrams with a combinatorial factor 15



Sequential Discontinuities - Two-loop Triangle

p1.

p2

p3

M∝ 6[Li4(z) − Li4(z̄)] − 3 ln(zz̄)[Li3(z) − Li3(z̄)]

+
1

2
ln2

(zz̄)[Li2(z) − Li2(z̄)]

with zz̄ = p22/p
2
1, (1 − z)(1 − z̄) = p23/p

2
1
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Energy rotations in z, z̄ plane

M∝ 6[Li4(z) − Li4(z̄)] − 3 ln(zz̄)[Li3(z) − Li3(z̄)]

+
1

2
ln2

(zz̄)[Li2(z) − Li2(z̄)]

R⋆
I

R⋆
II

R⋆
III

R⋆
IV

R1R2

R3

z = 0 z = 1

z̄ = 0
z̄ = 1
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Same Channel Sequential Disc - Two-loop Triangle

M∝ 6[Li4(z) − Li4(z̄)] − 3 ln(zz̄)[Li3(z) − Li3(z̄)]

+
1

2
ln2

(zz̄)[Li2(z) − Li2(z̄)]

[Discp22Discp22M(z, z̄)]
R2

∝ Li2(z) − Li2(z̄)

[M
cut]

R2 = p3

p2

p1

∝
1

2
(Li2(z) − Li2(z̄))

[Discp22Discp22M(z, z̄)]
R2

= 2 [M
cut]

R2
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Steinmann Relations

M cannot have sequential discontinuities in partially
overlapping channels

s

t u

M cannot contain ln(s) ln(t) but can contain ln(s) ln(u).

● Important for bootstrapping amplitudes.
● Old proof in S-matrix theory (Steinmann 1960).

– Non-perturbative, used unitarity.
● Our new proof in TOPT.

– Applies to individual Feynman integrals.
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Proof of Steinmann Relations in TOPT

● Each TOPT diagram has denominators with a sequence of
energies, corresponding to Mandelstams.

p1

p2

p3

p4

p5

−E5, E1−E5, E1−E5, E1−E5, E1−E5−E3, E1−E5−E3+E2

p25, (p1 − p5)
2 , (p1 − p5 − p3)

2 , (p1 − p5 − p3 + p2)
2

● Each energy is a subset of the sequential ones.

Cannot have sequential discontinuities in partially
overlapping channels when corresponding regions exist.

Regions may not exist when some particles are massless.
Does not constrain branch points at infinity.
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Results

● Discontinuities defined as monodromies around
singularities.

– Start in kinematic region where cut can be performed.
– Monodromy matrices make calculations of monodromies

algebraic.
● TOPT used to prove:

1. Same channel discontinuities: Equal to a sum of
diagrams cut multiple times with a combinatorial factor.

2. Different channel discontinuities: Equal to a sum of
diagrams cut multiple times in a kinematic region where
all cuts can be computed.

3. Steinmann Relations: M cannot have sequential
discontinuities in partially overlapping channels.
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Backup Slides
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Sequential Discontinuities - ln3(s)

M= p→
A B C ∝ ln3

(s)

Calculate discontinuity and sequential discontinuities using
monodromy matrices:

● Collect total differentials into a vector.

d(
lnn s

n!
) = (

lnn−1 s

(n − 1)!
)
ds

s
,

V ≡ (1 ln s 1
2

ln2 s 1
3!

ln3 s)

● Solve differential equation.
dV = V ⋅ ω

with

ω =

⎛
⎜
⎜
⎜
⎝

0 ds
s

0 0

0 0 ds
s

0

0 0 0 ds
s

0 0 0 0

⎞
⎟
⎟
⎟
⎠
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Sequential Discontinuities - ln3(s)

● Collect solutions in a normalized matrix.

Mγ0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 ln s 1
2 ln2 s 1

3! ln3 s

0 1 ln s 1
2 ln2 s

0 0 1 ln s

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

with dMγ0 = Mγ0 ⋅ ω.

● Calculate monodromies around s = 0.

M↺ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 2πi 1
2(2πi)

2 1
3!(2πi)

3

0 1 2πi 1
2(2πi)

2

0 0 1 2πi

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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Sequential Discontinuities - ln3(s)

● Compute any sequence of discontinuities by multiplying
matrices.

(1 −M↺) ⋅Mγ0(s)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 2πi 2πi ln s +
(2πi)2

2
2πi
2 ln2 s +

(2πi)2
2 ln s +

(2πi)3
3!

0 0 2πi 2πi ln s +
(2πi)2

2

0 0 0 2πi

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Discs
ln3
(s)

3!
=

2πi

2
ln2 s +

(2πi)2

2
lns +

(2πi)3

3!
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