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Outline

The two pillars of our field:

1. Finding new structures and symmetries in scattering amplitudes.

2. Helping our friends in other fields solve nontrivial problems of physical
interest.

Structures
and
Symmetries

Practical
Applications

We are hearing a lot about both of these sides of amplitudes.

A good example of practical applications are EFT’s for BSM physics.
Also structures and symmetries.
See talks from Y. Shadmi and N. Craig

Here I will discuss I want to talk about EFT non-renormalization theorems.



Standard Model EFT

Buchmuller and Wyler; Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek

* As we are finding out, it is difficult to find BSM physics at the LHC.

* The most popular top down models for new physics haven’t been found.

* Need open mind: quantified by constructing EFT’s for BSM physics.

* For good reason SMEFT and its cousin HEFT are becoming more popular.

1 or example
LSM + A£ AL = F Z C,EG) 01(6) gimensim?l6

operators

At dimension 6: 59 independent operators, not including flavor indices
3 2 122 2 14 4
F ) Qb F ’ D ¢ y w ) etc
Basic idea is simple: Parametrize new physics using EFTs

Here I will discuss a simplified version of SMEFT to discuss some generic properties.



Anomalous Dimensions

operators

1 (6) ,~(6) imension 6
Lav + AL A,C:FZCZ- O, d

* At dimension 6: 59 independent operators, not including flavor indices
* Operator mixing controlled by the anomalous dimension matrix, 3481 entries
* In impressive work, one-loop dim 6 anomalous dimension matrix

computed by Alonso, Jenkins, Manohar and Trott

/ determines operator mixing

é)cz- A
1677- A O;
dlog 9
og K j
Gives insight into how experimental constraints from one {O]}

operator inform us about coefficients of other operators.

~TeV



Dimension Six Operators

Label Operator

OpFs % fabe Fa Fa Fe,

Os2F2), (6Te)Fe, Fe,

O(s2r2), de( T ) Fb, F,
O(p2g1), (6T D ) (o' D, o)

O(p241), (6t6)0 (o1 0)

Ogs (¢'¢)?

O(bg2y), i(¢"(Dy — 5u)¢))@p7u¢,vr)
Olbgaya), i(61(TAD, — D, T4)6) (P TA~my")
Oy, (P Y™) (PPud")
Owde (G TA4™) (G, TA4")

List of operators
we consider here

Closely related to operators
of SMEFT.

For our study we use simplified version of SMEFT. Dirac Fermions, no masses,
no Yukawas. Same ideas apply to any EFT. Verified our calculations again Jenkins,
Manohar et al. Significant overlap.

5



Z.eros in SMEFT

Unexpected zeros in one-loop anomalous dimension matrix
Followed a pattern analogous to susy. Alonso, Jenkins, Manohar, Trott;

. .. Elias-Miro, Espinoza, Pamarol
Explanations from helicity and angular momentum
Cheung and Shen

Jaing, Shu, Xiao, Zheng

F3 F292 Fyle ot 2P| F3 F2¢ Fol¢ o' 020 |[9%? ve?D ¢*D?  ¢°

(w,w) | (0,6) (2,6) (2,6) (2,6) (4,6)|(6,0) (6,2) (6,2) (6,2) (6,4)|(4,4) (4,4) (4,4) (6,6)

F*  (0,6) X X X X X X X X X X
F*¢*  (2,6) X X X X X X
o (2,6) X X X
1;')4 (2,6) X X X X X X X X y? X X
-1;',!2 @3 (4,6) | x y? X
F*  (6,0) X X x X X X X X X X
2% (6,2) x X x | x x x
Fi?o (6,2) X X x
vt (6,2) | x X x X X X X X 72 X X
V2® (6,4) i | x X
V® (4,4) X g2 X X y? X X X
WD (4,4) .
o*D*  (4,4) X x x X

QDG (6,6) | x* X X x* X X X

.. from Cheung and Shen 1505.01844
Grey are zeros. x means trivial zero.

See Craig’s talk

One-loop anomalous dimension matrix has a surprising number of zeros! 6



Nontrivial Zeros in Anomalous Dimension Matrix

A simple question: Do nontrivial zeros exist beyond 1 loop?
Nontrivial zero: you can write down Feynman diagrams but you still get zero

At first sight:
* Helicity selection rules or susy embeddings only work at tree level.

e Sensible answer: “Not a snowball’s chance in hell”

But as we will see there are actually many new nontrivial zeros:

1. Sometimes only integrals which can’t generate the correct logs.

2. Sometimes we can adjust 1 loop scheme to make two-loop anomalous
dimension vanish.

3. Sometime color selection rules kill contributions.

4. Sometimes helicity selection can become active if enough other cuts vanish.

7



On Shell Methods

Two basic approaches:

1. Use unitarity method to calculate amplitudes and associated UV divergence.
7B, Dixon, Dunbar, Kosower, etc

2. Slick form factor method. Anomalous dimensions directly in terms of cuts.
aron-Huot and Wilhelm

* Method 1 needs no explanation here. Use our standard amplitude methods.

* Beyond 1 loop generally we need both because need to feed 1 loop amplitudes
into cuts at 2 loops.

Need good control of IR singularities. Dim. Reg. mixes IR and UV anomalous
dimensions.

Reasons we like on-shell methods:

1. Efficient way to calculate.

2. Exposes new structures (like zeros).

3. Helps a lot with evanescent operator chaos.

Evanscent operator: vanishes in D =4 but creates dim. reg. chaos beyond 1 loop



On Shell Methods

Simple observation helps a lot:
Don’t focus on UV infinities. Instead focus on renormalization scale.
Log(s;) contains information we need. Log(s;/u?)

* Arguments of logs must be dimensionless.
* Imbalance gives renormalization scale dependence.

Used in for example slick recalculation of two-loop R3 divergence of gravity

7B, Cheung, Chi, Davies, Dixon;
Z.B., Chi, Dixon and Edison

I H -

# bosons — # fermions

Subtract IR divergence in integrand and evaluate phase-space integrals.

[12][34]

o K 6 l ' ) ) _L\Tb - j\/‘vf 2 T = —,—
= =) G B e

MP710%P (ff 4+

» Gives renormalization scale running of 2 loop R’ counterterm.
* Avoids nontrivial chaos from evanescent operators and fields. 9



Unitarity Cuts and Renormalization

Caron-Huot and Wilhelm
A very slick way to systematically deduce anomalous dimension from unitarity cuts

. Form factor: Off-shell momentum

injection from operator

Filp1, .-, pn; ¢ ) = (p1, -+, Pn]|O;(q)|0)

Xe" Xe" taD
F(pie*,...,pne'®) = e " F(p1,...,pn)
— Dilation operator

=0

Analyticity: F' = e D
\ e—zﬂD FVZ* _ & FZ*
Unitarity: ' = SF™* .\
\ i X ) ) implied sum over
Proven from S'S T — 1 and treating operator insertion as perturbation unitarity cuts

Dilation operator (not including engineering dims):
uv IR
DFE; = —pdy Fi = |Avij + 0558 0y] F; Ay=v"" =7

Slick way to extract anomalous dimensions directly from unitarity cuts. .



One Loop Renormalization

e ™D Fz* =5 F,L* F; : Form factor with operator i

o sum over unitarity cuts
Dilation operator

DE; = —p0, 5 = [Aviy + 0458 0g]

S =1+iM (e —1)F =iMF}

Consider 1 loop

— form factor

] <€— operator insertion
amplitude —>

N Ay =AUV _ IR

unitarity
cut

1 Helicity selection rules:
[A%'(jl) + 57;]-5(1)(99] Fj(o) = —;(MFZ')“) If cut vanishes then

anomalous dim vanishes.

Up to IR can extract anomalous dimensions from unitarity cuts. 11



Dealing with IR

Dim. reg. does not distinguish between IR and UV

Ay = AUV _ 4R

To get UV, need to subtract IR from cut integrands or after integration

IR well understood. E.g at one loop: Magnea and Sterman
Catani

Similar formulas

2 €
0 =7 1 E :§ :T T, { T21‘ (QZNA ) at higher loops.
JR— 6 /’fp. /wq

=1 q#p

Alternatively location of IR singularities in integrand understood and can subtract,
especially at 1 loop.

Some useful IR information:
— The IR is diagonal in the amplitudes and form factors (up to color)

— No IR singularity at 1°¢ loop order where diagrams exist.
12



Two Loop Renormalization

o 00 e

Get 2 loop anomalous dimension directly in terms of unitarity cuts:

Two loop anomalous dimension

Ay=~"Y -«
1) | < 1 2) | ¢ 0
[A%(j) + Oijﬁ(l)ag] Fj( ) + [A%(j) + Oz‘jﬁ(Q)ag] FJ( )
1 1) | . 1) | < 0 1
—im [A%.(k) + oz-kﬁ(l)ag] [Aq/,g} + okjﬁ(l)ag] FY = ——(MF)®
sum over

Can clean up by separating real and imaginary parts: unitarity cuts

1 - ~ 1
—im [Aqﬁ) +oik,3<1>ag] [m,g) +okjﬁ<1>ag} FY = ——Im(MF)® = (MMF,)®
1), 5 1) (1) @) s a2 o _ 1 11(2) Key formula
29+ 03800, ReE[Y + [A0f)) +038%0,| FY = — Re(M)Re(F)] o o e

7

unitarity cuts with imag. parts removed .
ZB, Sawyer, Parra-Martinez

To get zero need vanishing not only in 2-particle cuts, but also in 3 particle cuts.



Minimal Form Factors

Caron-Huot and Wilhelm
Another concept that helps a lot are minimal form factors: ZB, Parra-Martinez, Sawyer

Use minimal form factors e.g. F? form factor look at 3 external gluon form factors

(1)
(vi; " =it + B(9)8g) " (D1, ey Pn|0:]0)? . | .
1 * '
:—;<p1,...,pn|M®Oj|O> . : .
Minimal First chance for
.. Suppose that for trivial reasons
form factors operator mixing

an anomalous dimension

I
M )%/ vanishes up to L — 1 loops

At L loops for first potential contribution and minimal form factor:

1
(YIVYE) (D1 oo pr| OOV = —— (1, ..., pp | M @ O;|0)

S
T

We use this to prove multi-loop nonrenormalization theorems.
14



Nonrenormalization Theorem

In fact there are plenty of zeros at higher loops. Some of the zeros follow from a theorem

An L loop nonrenormalization theorem:

Consider operators Og and Oy such that [(O;) > 1(0 ).
O, can renormalize Og at L loops only if L > 1(O;) — 1(Oy)

l((’)m) : number of field insertions in operator
(D, : short operator

(O; :long operator up to 2 loops

True even if you can write down Feynman diagrams

* Important to focus on minimal form factors.

* Crucial to feed in IR understanding. If no lower loop
diagrams won’t get IR contamination.

* More generally, scaleless diagrams won’t lead to
UV renormalization. /‘

* Easy to identify even more zeros than simple form scaleless integral
of theorem given above.

15



Summary of Proof

Longer operators often cannot renormalize shorter operators, even

when diagrams can be written down. 7B, Parra-Martinez, Sawyer
Constraints:
! 9 Minimal form factor
1O % nad+np — 2k = 1(0,)
I
i Required for nonzero result:
ng

N F :#legs in form factor
N M : # legs in amplitude
L :total loop number

LF :loops in form factor

1(O1): number of field insertions in O

e >2 external legs on the left
npm > k+ 2

* No scaleless integrals on the right
np > 1(0) = (Lr —1) =00

Putting these constraints together shows:

L> Z(Ol) o Z<Os>

16




renormalized operator

renormalized operator

Nonrenormalization Theorem Examples

operator insertion

One-loop Zero from helicity rules

F2p|Fy? | p?y?| ¢° of Cheung and Shen
F 2gb (2) | X2 X1 Overlap of zeros of Cheung and Shen
5 and our nonrenorm thems
F X1 [ X3
P*1)* (2) XL Theorems active at L loops
5
¢ (L) Delayed to L loops for trivial reasons
Dimension 5 operators
operator insertion
F3 ¢2F2 FQMDQ D2 ¢4 D¢2w2 ¢4 ¢3w2 ¢6
F3 X1 (2) X9 X9 X2 X3 X3
¢°F (2) [X2 Lots of new zeros
Fon)? %1 |IX3 at higher loops
D2¢4 St C d all the dim 6
D¢2w2 %1 (3) | ompare 2; e. 1m 0 one
] > (1 oop anomalous dims
ZD > (2) |(4) to Jenkins, Manohar,Trott
7Y (2)| and they agree! Done 2
¢6 ways.

Dimension 6 operators

17



Pattern of Zeros Dimension 7

operator insertion

¢3F2 D2¢5 D¢3w2 ¢¢4 F(bsz ¢4w2 ¢7

F3¢ | x1 || X2 Xa |[xa| (2) | %3 |x3
D2F¢3 X1 X1 X1 X9 X1 X9 X3
=~5 DF¢¢2 (2) X9 X1 X1 X1 X9 X4
§ 2 1 (2) | B) | (2) | (2| x1 |/ Xa |Xa
D% ?| (2) | (2) | x1 | x| x1 | X2 |(4)
Bl o el e [x]@]6]6
S | §°F? (2) [X2
g D?*¢° X1 | X2
o=
2 | Dgp>y? x1 [(3)
o’ (2) [(4)
F¢?a)? X1 |IX3
¢*y? (2)

X I, Theorems active at L loops

Lots of new zeros at higher loops and for higher dimension operators



One-Loop Amplitudes

ZB, Parra-Martinez, Sawyer

Need 1 loop amplitudes to feed into 2-loop anomalous dimensions.
Use standard unitarity methods:

* Worked out all the 4 point amplitudes.

* D dimensional methods to keep an eye on evanescent
issues and rational pieces.

* Use physical state projectors to simplify integrals.

e Overkill but used FIRE Glover and Tejeda-Yeomans
! A.V. Smirnov
Many amplitudes look exactly like you might expect: IR & UV subtracted
2
A, (15 25 30 45 Yy = —Sg* (Nft(3X, +2) (OmunC{yiy? + Oprc iy I
. . s mn rC(y4) : X, =1
@ m "% ¥ 9 nn(wp’ v 4 fermion, B\
+9(2s + (5 — 3X¢))c(yay, ) different flavors 2
ARA(1+273%47) ) = gPeps (AN (t — u) + 2uBo) X, + (AN (s —w) + 2uB0)Xe 4 yector Xy =log (T)
- %(44]\1 + 2Ny — N,)u),
But many are rational or zclaro: AD oy, (1525340 = AD o (15953 4505 = 0
(1) +o9+9 4
A p2gay, 17273445) ) = L 2c(p24), NS AD o, (1723,45) 1 = %g C(Ds2y2y, Ni (s +2t)
(1) +9—
Al prgay, (1727 3,45) = 0, AlD sy, (17273,45) 1y = A o (15253 ,45) 5 = 0.

A surprising number of amplitudes are rational or vanish!
Craig, Jiang, Li, Sutherland. 19



One-Loop Amplitude Zeros

amplitude
| + |
“{ Lﬂ L“: o L{ Li “*T L“: S| ZE We calculated these
S F SN S S SERSERS ISR .
T T I S S A AP R R R s one-loop amplitudes
S e e S e N e e e e
+ .+ IS ]IS | S | | | e e e
I I = S = <N <N < =T <N <N <%
O |LILIRIL|R|IO|IL|R|IR|[L]0][0]0]0 Local, finite
renormalization
Owpepzy, |RVO|RILIRFO 000000 ¢4 sets to zero!
§ Owyerry,  RIO|JR|LILJO[O]O|O]O]O]|@|d ]|
© | Owrgry, | BB |G| 0|0 |Lo| G| 0| F|F|O0|G | 0|
()
Q| O, gl PR |0 |L|@# |6 6|0 Lo 6|0 ¢ .
Owezwry | B 00100 lolo]o]o][o0|L|o0|o0]|0|e— g:t%;llggsir?spec tion
Oy, | B | $ [ R |0 |L| R |0|0|R |[L|L|L| L
Own |P|P 9|99 ]9 R]OJOR R L L One loop amplitudes
Oy, R|lo|o|R|L
wr [P|9]0][9]F : also have a remarkable
L : contains Logs number of zeros
R : rational
() : Trivial zeros. No diagrams. See Craig’s talk
.. .. . raig, Jiang, L1, Sutherland;
0 : known zeros helicity, angular mom., explicit calculations <— faing, ;hu g),(ia:) S;h; d
0 : New zero, requires inspection. & S ’ °
.. . Latest zeros
0 : Finite renormalization sets to zero. :
.. .. ) ; 7B, Parra-Martinez, Sawyer (to appear)
I, : Finite renormalization removes rational piece.

Zeros in one-loop matrix elements can imply new zeros at two loops.

Expect more zeros in interference with trees. Azatov, Contino, Machado, Riva
20



More Two Loop Anomalous Dimension Zeros
O(p2gry, = (' D*¢)(¢'Dyug) O(p24), = (¢70)0(¢79)

Oy, = (DA™ ) (PP, 0") Oy, = (PYFTUY™) (PP, TP")

There is a nonvanishing cut and indeed we get nonzero:

2
| UV(2) _ _8~4Nf(N —2)
: | (p4)1—(D2¢%), — 9 9N » 92
| ey NN - ) SNCE

Twh1—(D2gh), = Y 9N

But easy to remove with a finite renormalizations (scheme choice):
10g%(N — 2)N;

CD%t T DR T o IN Dotz Can also redefine
C(D2¢%)y —> C(D2gt)y T > (2%7]\7 Ny C(DF22)s 5 operators.
29°Ny
C(Dg242); — E(Dg2y?)2 — g C(hn -
UV(2) _ 0 ~UV(2) —0
H(4)1—=(D2¢*)1 [(Y4)1—(D2p4)2

We can choose scheme to generate even more two loop zeros

21



Color Selection Rules

Simplified model with no Yukawa’s
Opiy, = (™4™ (7,07)
Owt), = {Ow2r2),, Og2r2), O2r2), = (610)F, FL,
O(p2r2), = A (1T ¢)F] FC

U pv

As simple example:

UV (2) (0) Uv () (0) uv(1) 1)
Yo @ r) L), T V) s r)t @2y, T V) 5 0e2e2), L (De2e2),

1 no— R
= ((M%i»“” @ ReF)) (WFF)+ (M3,) % ® ReF| ), <¢¢ww>)
| 3 4 |
' |
: |
i |
43
A(1)4 (1+ 2~ 3+4+) _ _?Nf8[14]<24> [Tagz Ta4]i2i1
Wiy 79 3(34)? Contributions have antisymmetric
AN, (17 9+ 3+47) = N4 (12)[23][24] [T3, T, color but target operators have
W T i 3(34) symmetric color.
(1) 4oy qg Nf.S’(S -+ 21) [Tas, Ta4]z' i
Apgrya,(1,253747) = 3(34)2 =

Can get additional zeros simply because color factors don’t match. )



Summary of Two-Loop Anomalous Dimension Zeros

operator insertion

I N I I T T S I I I
0|9 |9 |9 |9 |0 |9 |9 |9 |0
Ops 0lo0|o0|0|0|O0]¢
< | Owr, 000
§ O 212, 0010
& | Oween, 0 | 0* | 0
E O (D26, 0| 0° | 0
Té Owg242), g
2 | Owsrenys o
" | Ows 0|0 g
Oy, 010 f

Ogs

Two loop zeros in anomalous dim matrix

() : Trivial zeros. No diagrams.

7B, Parra-Martinez, Sawyer

In simplified SMEFT,
with no Yukawas.

Plenty of 2-loop zeros!
Possibly even more zeros
can be found.

0 : Nonrenormalization theorems, color, helicity and “accidental”

0*: Good scheme choice.

23



Summary of Anomalous Dimension Zeros

With traditional Feynman diagrams: If you can write a diagram you expect
nonzero anomalous dimension.

Now we have many different (overlapping) reasons for zeros.

Alonso, Jenkins, Manohar and Trott;

1. Susy embeddings. Elias-Miro, Espinosa, Pomarol
2. Helicity selection rules. Cheung and Shen

3. Angular momentum selection rules. Jaing, Shu, Xiao, Zheng

4. Scaleless integrals and nonrenormalization theorems.

5. Color selection rules. ZB, Parra-Martinez, Sawyer
6. Good choices of renormalization schemes (finite shifts).

7. “Accidental zeros”, need to inspect the unitarity cuts.

Surely not the end of the story.

24



Summary

1. For good reason SMEFT is becoming very topical in collider physics.
Systematic approach to BSM physics.

2. Amplitude methods streamline calculations of anomalous dimensions.
Confirmed many one-loop SMEFT anomalous dimensions.

3. Nontrivial zeros in anomalous dimensions explained and predicted.
Theorems valid beyond one loop.

4. Calculated one-loop amplitudes showing new zeros that feed into vanishing
two-loop anomalous dims.

S. Even more two-loop zeros: adjust renormalization scheme, vanishings of
1 loop rational terms.

Good opportunities for amplitudes people to help out with SMEFT or HEFT,
both on conceptual and calculational sides.

See talks by Shadmi and Craig
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