Belle 2 framework efforts

Hadrien Grasland, Martin Ritter 2020-04-13

Belle 2 experiment

- Asymmetric e⁺e⁻ experiment
- Mainly at Y(4S) resonance (10.58 GeV)
- Focus on B, charm and τ physics

(target values)

Typical events

- ~10 tracks/event
- ~100kB raw data
 → ~10kB mdst
- Relatively low track momenta
- Relatively high machine background

Belle 2 framework

- Written from scratch, using experience from Belle & others
- Many similarities with its contemporaries :
 - C++ computations, Python configuration & steering
 - ROOT-based I/O, Geant4-based simulation
 - Sequential chains of *modules* + control flow

Parallelization strategy

- Operating at event granularity
- (Seq. input \rightarrow Parallel processing \rightarrow Seq. output) pipeline
- Processes communicating via POSIX shared memory
- Memory sharing achieved through late process fork-ing

Parallel scaling

- Current solution scales well enough for the foreseeable future
 - A good thing: we couldn't afford a multi-threading migration

High-level analysis tools

- DSL-based high-level analysis primitives
- Reduces the need for C++, aiming for "pure python"

Example: reconstruct $B^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-) K^0_S(\rightarrow \pi^+\pi^-)$

```
# create Ks -> pi+ pi- list from V0
# keep only candidates with 0.4 < M(pipi) < 0.6 GeV
fillParticleList('K_S0:pipi', '0.4 < M < 0.6')</pre>
```

```
# reconstruct J/psi -> mu+ mu- decay
# keep only candidates with 3.0 < M(mumu) < 3.2 GeV
reconstructDecay('J/psi:mumu -> mu+:loose mu-:loose', '3.0 < M < 3.2')</pre>
```

```
# reconstruct B0 -> J/psi Ks decay
# keep only candidates with 5.2 < M(J/PsiKs) < 5.4 GeV
reconstructDecay('B0:jspiks -> J/psi:mumu K_S0:pipi', '5.2 < M < 5.4')</pre>
```

```
# perform B0 kinematic vertex fit using only the mu+ mu-
# keep candidates only passing C.L. value of the fit > 0.0 (no cut)
vertexRave('B0:jspiks', 0.0, 'B0 -> [J/psi -> ^mu+ ^mu-] K_S0')
```

```
# build the rest of the event associated to the B0
buildRestOfEvent('B0:jspiks')
```

```
# perform MC matching (MC truth asociation). Always before TagV
matchMCTruth('B0:jspiks')
```

```
# calculate the Tag Vertex and Delta t (in ps)
# breco: type of MC association.
TagV('B0:jspiks', 'breco')
```

High-level analysis tools

- DSL-based high-level analysis primitives
- Reduces the need for C++, aiming for "pure python"
- Jupyter integration:
 - Built-in to basf2 releases
 - Work done in subprocesses
 - Log and event data viewers
 - Progress bars...

🖸 jupyter B2JpsiKshort Last Checkpoint: 5 minutes ago (unsaved changes)

 ΔT

Condition database

- Metadata is queried from a REST server
- Payloads are usually ROOT files, fetched from CVMFS
- Full local caching \rightarrow seamless offline work & benchmarking

Quality infrastructure

- Framework benefits from overall focus on SW quality :
 - Continuous integration
 - GCC + clang + icc builds
 - Aiming for zero warnings
 - cppcheck, clang static analyzer, memcheck
 - Software quality shifts
 - Nightly validation

Monday, January 11, 2016 Revision: 24210 A warnings						L	ibraries Modules Packages		
Package details									
Package	Librarian		Build Result		Clang Build Result		Cppcheck	1	Test Result
alignment	Sergey Yashchenko	~	OK	~	ОК	~	ОК	~	0/4, 0/0
analysis	Anze Zupanc	-	OK		Warnings: 2		Warnings: 4 🕦 Remarks: 12	8	0/96, 1/1
arich	Luka Santelj		Warnings:	1	ОК	1	Remarks: 1	4	0/0, 0/1
b2bii	Anze Zupanc	~	1 OK		Warnings: 1	i	Remarks: 3	None	
background	Marko Staric	~	OK	~	OK	1	ОК	None	
beast	Igal Jaegle	1	Warnings:		Warnings: 10	Δ	Warnings: 1 🕦 Remarks: 20	None	
bklm	Leo Piilonen	~	9 OK	1	ОК	1	ОК	~	0/0, 0/1
calibration	Sergey Yashchenko	~	OK	1	OK	1	ОК	None	
cdc	Elichi Nakano	~	OK	1	OK	Δ	Warnings: 3	~	0/0, 0/1
decfiles	Phillip Urquijo	~	OK	~	ОК	1	ОК	None	
display	Christian Pulvermacher	~	OK	1	ОК	1	ОК	None	
ecl	Kenkichi Miyabayashi	1	Warnings:		Warnings: 1	i	Remarks: 43	-	0/10, 0/0
eklm	Timofey Uglov, Kirill Chilikin	-	1 OK	1	ОК	1	Remarks: 43	None	
framework	Martin Heck, Christian Pulvermacher	~	ОК	~	ОК	i	Remarks: 40	1	0/124, 0/23
generators	Torben Ferber	1	ОК	1	OK	G	Remarks: 3	1	0/3.0/0

Validation infrastructure

- Physics plots every night
- Auto. dependency handling
- Auto. checks vs reference
- Nice web visualization
- Easy local runs
- Easy bisect tooling

Platform support

- We provide pre-built binaries for...
 - RHEL/SLC 6, RHEL/CentOS 7 + 8 coming soon
 - Ubuntu 16.04, 18.04 + 20.04 coming soon
- For many other distributions, we provide...
 - Automatic externals build deps installation
 - Automatic (Make-based) externals compilation
- Belle 2 specific software is built via SCons

Conclusion

- The Belle 2 framework is a "wget" of HEP software frameworks
 - Solid implementation of classical approaches
 - Works well enough for people to forget it's there
- Mostly in maintenance mode these days
 - Main ongoing R&D: replace POSIX shm IPC with ZeroMQ